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Preface
Bellman has called matrix theory 'the arithmetic of higher mathematics.' Under the influence of Bellman and Kalman, engineers
and scientists have found in matrix theory a language for representing and analyzing multivariable systems. Our goal in these notes
is to demonstrate the role of matrices in the modeling of physical systems and the power of matrix theory in the analysis and
synthesis of such systems.

Figure : Matrix Analysis

Beginning with modeling of structures in static equilibrium we focus on the linear nature of the relationship between relevant state
variables and express these relationships as simple matrix-vector products. For example, the voltage drops across the resistors in a
network are linear combinations of the potentials at each end of each resistor. Similarly, the current through each resistor is
assumed to be a linear function of the voltage drop across it. And, finally, at equilibrium, a linear combination (in minus out) of the
currents must vanish at every node in the network. In short, the vector of currents is a linear transformation of the vector of voltage
drops which is itself a linear transformation of the vector of potentials. A linear transformation of n numbers into m numbers is
accomplished by multiplying the vector of n numbers by an m-by- n matrix. Once we have learned to spot the ubiquitous matrix-
vector product we move on to the analysis of the resulting linear systems of equations. We accomplish this by stretching your
knowledge of three-dimensional space. That is, we ask what does it mean that the m-by- n matrix X transforms Rn (real n-
dimensional space) into Rm? We shall visualize this transformation by splitting both Rn and Rm each into two smaller spaces
between which the given X behaves in very manageable ways. An understanding of this splitting of the ambient spaces into the so
called four fundamental subspaces of X permits one to answer virtually every question that may arise in the study of structures in
static equilibrium.

In the second half of the notes we argue that matrix methods are equally effective in the modeling and analysis of dynamical
systems. Although our modeling methodology adapts easily to dynamical problems we shall see, with respect to analysis, that
rather than splitting the ambient spaces we shall be better served by splitting X itself. The process is analogous to decomposing a
complicated signal into a sum of simple harmonics oscillating at the natural frequencies of the structure under investigation. For we
shall see that (most) matrices may be written as weighted sums of matrices of very special type. The weights are eigenvalues, or
natural frequencies, of the matrix while the component matrices are projections composed from simple products of eigenvectors.
Our approach to the eigendecomposition of matrices requires a brief exposure to the beautiful field of Complex Variables. This
foray has the added benefit of permitting us a more careful study of the Laplace Transform, another fundamental tool in the study
of dynamical systems.

--Steve Cox
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1.1: Nerve Fibers and the Strang Quartet
We wish to confirm, by example, the prefatory claim that matrix algebra is a useful means of organizing (stating and solving)
multivariable problems. In our first such example we investigate the response of a nerve fiber to a constant current stimulus.
Ideally, a nerve fiber is simply a cylinder of radius aa and length  that conducts electricity both along its length and across its
lateral membrane. Though we shall, in subsequent chapters, delve more deeply into the biophysics, here, in our first outing, we
shall stick to its purely resistive properties. The latter are expressed via two quantities:

1.  the resistivity in  of the cytoplasm that fills the cell, and
2.  the resistivity in  of the cell's lateral membrane.

Figure 1.

Although current surely varies from point to point along the fiber it is hoped that these variations are regular enough to be captured
by a multicompartment model. By that we mean that we choose a number  and divide the fiber into  segments each of length 

 Denoting a segment's axial resistance

and membrane resistance

we arrive at the lumped circuit model of Figure 1. For a fiber in culture we may assume a constant extracellular potential, e.g., zero.
We accomplish this by connecting and grounding the extracellular nodes, see Figure 2.

Figure 2.

Figure 2 also incorporates the exogenous disturbance, a current stimulus between ground and the left end of the fiber. Our
immediate goal is to compute the resulting currents through each resistor and the potential at each of the nodes. Our long--range
goal is to provide a modeling methodology that can be used across the engineering and science disciplines. As an aid to computing
the desired quantities we give them names. With respect to figure 3, we label the vector of potentials

l

ρi Ωcm

ρm Ωcm2

N N
l

N

=Ri

ρi
l

N

πa2

=Rm

ρm

2πa l

N
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We have also (arbitrarily) assigned directions to the currents as a graphical aid in the consistent application of the basic circuit laws.

We incorporate the circuit laws in a modeling methodology that takes the form of a Strang Quartet:

(S1) Express the voltage drops via 
(S2) Express Ohm's Law via 
(S3) Express Kirchhoff's Current Law via 
(S4) Combine the above into 

The  in (S1) is the node-edge adjacency matrix -- it encodes the network's connectivity. The  in (S2) is the diagonal matrix of
edge conductances -- it encodes the physics of the network. The  in (S3) is the vector of current sources -- it encodes the network's
stimuli. The culminating  in (S4) is the symmetric matrix whose inverse, when applied to , reveals the vector of potentials, 

. In order to make these ideas our own we must work many, many examples.

Strang Quartet, Step 1
With respect to the circuit of Figure 3, in accordance with step 1, we express the six potential differences (always tail minus
head)

Such long, tedious lists cry out for matrix representation, to wit  where

x = ( )x1 x2 x3 x4

y = ( )y1 y2 y3 y4 y5 y6

e = −(Ax)

y = Ge

y = −fAT

GAx = fAT

A G

f

GAAT f

x

 Example 1

= −e1 x1 x2

=e2 x2

= −e3 x2 x3

=e4 x3

= −e5 x3 x4

=e6 x4

e = −(Ax)
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Strang Quartet, Step 2
Step 2, Ohm's Law, states:

The current along an edge is equal to the potential drop across the edge divided by the resistance of the edge.

In our case,

or, in matrix notation,  where

Strang Quartet, Step 3
Step 3, Kirchhoff's Current Law, states:

The sum of the currents into each node must be zero.

In our case

or, in matrix terms

where

Strang Quartet, Step 4

Looking back at A

A =

⎛

⎝

⎜⎜
⎜⎜
⎜⎜⎜
⎜

−1

0

0

0

0

0

1

−1

−1

0

0

0

0

0

1

−1

−1

0

0

0

0

0

1

−1

⎞

⎠

⎟⎟
⎟⎟
⎟⎟⎟
⎟

= ,yj
ej

Ri
j= 1, 3, 5 and = ,yj

ej

Rm
j= 2, 4, 6

y = Ge

A =

⎛

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜

1
Ri

0

0

0

0

0

0

1
Rm

0

0

0

0

0

0

1
Ri

0

0

0

0

0

0

1
Rm

0

0

0

0

0

0

1
Ri

0

0

0

0

0

0

1
Rm

⎞

⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟

− = 0i0 y1

− − = 0y1 y2 y3

− − = 0y3 y4 y5

− = 0y5 y6

By = −f

B =

⎛

⎝

⎜⎜⎜

−1

1

0

0

0

−1

0

0

0

−1

1

0

0

0

−1

0

0

0

−1

1

0

0

0

−1

⎞

⎠

⎟⎟⎟
and f =

⎛

⎝

⎜⎜⎜

i0

0

0

0

⎞

⎠

⎟⎟⎟
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we recognize in B the transpose of A

(S1) 
(S2) 
(S3) 

On substitution of the first two into the third we arrive, in accordance with (S4), at

This is a system of four equations for the 4 unknown potentials,  through  As you know, the system Equation may have
either 1, 0, or infinitely many solutions, depending on  and  We shall devote (FIX ME CNXN TO CHAPTER 3 AND
4) to an unraveling of the previous sentence. For now, we cross our fingers and 'solve' by invoking the Matlab program

Figure 4.

A =

⎛

⎝

⎜⎜
⎜⎜
⎜⎜⎜
⎜

−1

0

0

0

0

0

1

−1

−1
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Figure 5.

This program is a bit more ambitious than the above in that it allows us to specify the number of compartments and that rather
than just spewing the x and y values it plots them as a function of distance along the fiber. We note that, as expected,
everything tapers off with distance from the source and that the axial current is significantly greater than the membrane, or
leakage, current.

We have seen in the previous example how a current source may produce a potential difference across a cell's membrane. We
note that, even in the absence of electrical stimuli, there is always a difference in potential between the inside and outside of a
living cell. In fact, this difference is the biologist's definition of 'living.' Life is maintained by the fact that the cell's interior is
rich in potassium ions,  and poor in sodium ions,  while in the exterior medium it is just the opposite. These
concentration differences beget potential differences under the guise of the Nernst potentials:

Nernst potentials

where R is the gas constant, T is temperature, and F is the Faraday constant.Associated with these potentials are membrane
resistances

that together produce the  above via

and produce the aforementioned rest potential

With respect to our old circuit model, each compartment now sports a battery in series with its membrane resistance, as shown
in Figure 6.

 Example 2

K+ Na+

= logENa
RT

F

[Na]o
[Na]i

and = logEK
RT

F

[K]o
[K]i

ρm,Na and ρm,K

ρm

= +
1

ρm

1

ρm,Na

1

ρm,K

= ( +Em ρm
ENa

ρm,Na

EK

ρm,K
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Figure 6.

Revisiting step (S1-4) we note that in (S1) the even numbered voltage drops are now

We accommodate such things by generalizing (S1) to:

(S1') Express the voltage drops as  where  is the vector of batteries.

No changes are necessary for (S2) and (S3). The final step now reads,

(S4') Combine (S1'), (S2), and (S3) to produce 

Returning to Figure 6, we note that

This requires only minor changes to our old code. The results of its use are indicated in the next two figures.
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Figure 8.

Figure 9.
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1.2: Chapter 1 Exercises

In order to refresh your matrix-vector multiply skills please calculate, by hand, the product  in the 3 compartment case
and write out the 4 equations in the vector equation we arrived at in step(S4): 

Feedback

The second equation should read

 

We began our discussion with the 'hope' that a multicompartment model could indeed adequately capture the fiber's true
potential and current profiles. In order to check this one should run fib1.m with increasing values of NN until one can no
longer detect changes in the computed potentials.

(a) Please run fib1.m with , and 64. Plot all of the potentials on the same (use hold ) graph, using different
line types for each. (You may wish to alter fib1.m  so that it accepts NN as an argument).

Let us now interpret this convergence. The main observation is that the difference Equation , approaches a differential
equation. We can see this by noting that

acts as a spatial 'step' size and that  is approximately the value of the true potential at . In a slight abuse of
notation, we denote the latter

Applying these conventions to Equation  and recalling the definitions of  and  we see Equation  become

or, after multiplying through by 

We note that a similar equation holds at each node (save the ends) and that as  and therefore  we arrive at

(b) With  show that

satisfies Equation  regardless of  and 

We shall determine  and  by paying attention to the ends of the fiber. At the near end we find

which, as  becomes

 Question 1.2.1

GAAT

GAx = fAT

+ = 0
− +2 −x1 x2 x3

Ri

x2

Rm

(1.2.1)

 Question 1.2.2

N = 8, 16, 32

1.2.1

d(z) =
l

N
(1.2.2)

d(z)xk (k−1)d(z)

x((k−1)d(z)) (1.2.3)

1.2.1 Ri Rm 1.2.1

+ x(d(z)) = 0
πa2
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d(z)

2πad(z)

ρm
(1.2.4)

ρm

πad(z)

+2x(d(z)) = 0
aρm

ρi

−x(0) +2x(d(z)) −x(2d(z))

d( )z2
(1.2.5)

N → ∞ d(z) → 0

x(z) − x(z) = 0
d2

dz2

2ρi

aρm
(1.2.6)

μ ≡
2ρi
aρm

x(z) = α sinh( z) +β cosh( z)2μ
−−√ 2μ

−−√ (1.2.7)

1.2.5 α β

α β

=
πa2

ρi

x(0) −x(d(z))

d(z)
i0 (1.2.8)
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At the far end, we interpret the condition that no axial current may leave the last node to mean

(c) Substitute Equation  into Equation  and solve for  and  and write out the final .
(d) Substitute into  the  values used in fib1.m, plot the resulting function (using, e.g., ezplot ) and compare
this to the plot achieved in part (a).

This page titled 1.2: Chapter 1 Exercises is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.1: A Uniaxial Truss

Introduction

We now investigate the mechanical prospection of tissue, an application extending techniques developed in the electrical analysis
of a nerve cell. In this application, one applies traction to the edges of a square sample of planar tissue and seeks to identify, from
measurement of the resulting deformation, regions of increased 'hardness' or 'stiffness.'

Figure : A Uniaxial Truss

As a precursor to the biaxial problem let us first consider the uniaxial case. We connect 3 masses with four springs between two
immobile walls, apply forces at the masses, and measure the associated displacement. More precisely, we suppose that a horizontal
force,  is applied to each  and produces a displacement  with the sign convention that rightward means positive. The bars at
the ends of the figure indicate rigid supports incapable of movement. The  denote the respective spring stiffnesses. The analog of
potential difference (see the electrical model) is here elongation. If  denotes the elongation of the jth spring then naturally,

or, in matrix terms,  where

We note that  is positive when the spring is stretched and negative when compressed. This observation, Hooke's Law, is the
analog of Ohm's Law in the electrical model.

Hooke's Law

The restoring force in a spring is proportional to its elongation. We call the constant of proportionality the stiffness,  of the
spring, and denote the restoring force by . The mathematical expression of this statement is:  in matrix terms: 
where

The analog of Kirchhoff's Current Law is here typically called 'force balance.'

Force Balance

Equilibrium is synonymous with the fact that the net force acting on each mass must vanish. In symbols,

2.1.1
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or, in matrix terms,  where

As in the electrical example we recognize in  the transpose of 

we arrive, via direct substitution, at an equation for . Namely,

Assembling  we arrive at the final system:

Gaussian Elimination and the Uniaxial Truss

Although Matlab solves systems like the one above with ease our aim here is to develop a deeper understanding of Gaussian
Elimination and so we proceed by hand. This aim is motivated by a number of important considerations. First, not all linear
systems have solutions and even those that do do not necessarily possess unique solutions. A careful look at Gaussian Elimination
will provide the general framework for not only classifying those systems that possess unique solutions but also for providing
detailed diagnoses of those defective systems that lack solutions or possess too many.

In Gaussian Elimination one first uses linear combinations of preceding rows to eliminate nonzeros below the main diagonal and
then solves the resulting triangular system via back-substitution. To firm up our understanding let us take up the case where each 

 and so Equation takes the form

We eliminate the  (row 2, column 1) element by implementing

new row 2 = old row 2+  row 1

bringing

We eliminate the current  element by implementing

new row 3=old row 3+  row 2

bringing the upper-triangular system
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One now simply reads off

This in turn permits the solution of the second equation

and, in turn,

One must say that Gaussian Elimination has succeeded here. For, regardless of the actual elements of , we have produced an  for
which .

Alternate Paths to a Solution
Although Gaussian Elimination remains the most efficient means for solving systems of the form  it pays, at times, to
consider alternate means. At the algebraic level, suppose that there exists a matrix that \undoes\ multiplication by SS in the sense
that multiplication by  undoes multiplication by 2. The matrix analog of  is

where  denotes the identity matrix (all zeros except the ones on the diagonal). We refer to  as:

Inverse of S

Also dubbed "S inverse" for short, the value of this matrix stems from watching what happens when it is applied to each side of 
. Namely,

Hence, to solve  for  it suffices to multiply  by the inverse of 

Gauss-Jordan Method: Computing the Inverse of a Matrix

Let us now consider how one goes about computing  In general this takes a little more than twice the work of Gaussian
Elimination, for we interpret

as n (the size of S  running through nn columns of the identity matrix. The bundling of these nn applications into one is known as
the Gauss-Jordan method. Let us demonstrate it on the S appearing in Equation. We first augment S with I

We then eliminate down, being careful to address each of the three  vectors. This produces

Now, rather than simple back--substitution we instead eliminate up. Eliminating first the  element we find
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In the final step we scale each row in order that the matrix on the left takes on the form of the identity. This requires that we
multiply row 1 by  row 2 by  and row 3 by  with the result

Now in this transformation of S into I we have, ipso facto, transformed I to  i.e., the matrix that appears on the right after
applying the method of Gauss-Jordan is the inverse of the matrix that began on the left. In this case,

One should check that  indeed coincides with the  computed above.

Invertibility
Not all matrices possess inverses:

singular matrix

A matrix that does not have an inverse.

A simple example is:

Alternately, there are

Invertible, or Nonsingular Matrices

Matrices that do have an inverse.

The matrix S that we just studied is invertible. Another simple example is

This page titled 2.1: A Uniaxial Truss is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.2: A Small Planar Truss
We return once again to the biaxial testing problem, introduced in the uniaxial truss module. It turns out that singular matrices are
typical in the biaxial testing problem. As our initial step into the world of such planar structures let us consider the simple truss in
the figure of a simple swing.

Figure 1.

We denote by  and  the respective horizontal and vertical displacements of  (positive is right and down). Similarly,  and 
 will denote the associated components of force. The corresponding displacements and forces at  will be denoted by 

and  In computing the elongations of the three springs we shall make reference to their unstretched lengths,  and 

Now, if spring 1 connects  to  when at rest and  to  when stretched then its elongation is simply

The price one pays for moving to higher dimensions is that lengths are now expressed in terms of square roots. The upshot is that
the elongations are not linear combinations of the end displacements as they were in the uniaxial case. If we presume, however, that
the loads and stiffnesses are matched in the sense that the displacements are small compared with the original lengths, then we may
effectively ignore the nonlinear contribution in Equation. In order to make this precise we need only recall the Taylor development
of the square root of 

The Taylor development of  about  is

where the latter term signifies the remainder.

With regard to  this allows

If we now assume that
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 is small compared with 

then, as the O term is even smaller, we may neglect all but the first terms in the above and so arrive at

To take a concrete example, if  is one meter and  and  are each one centimeter, then  is one hundred times .

With regard to the second spring, arguing as above, its elongation is (approximately) its stretch along its initial direction. As its
initial direction is horizontal, its elongation is just the difference of the respective horizontal end displacements, namely,

Finally, the elongation of the third spring is (approximately) the difference of its respective vertical end displacements, i.e.,

We encode these three elongations in

Hooke's Law is an elemental piece of physics and is not perturbed by our leap from uniaxial to biaxial structures. The upshot is that
the restoring force in each spring is still proportional to its elongation, i.e.,  where  is the stiffness of the jth spring. In
matrix terms,

Balancing horizontal and vertical forces at  brings

and

while balancing horizontal and vertical forces at  brings

and

We assemble these into

and recognize, as expected, that BB is nothing more than . Putting the pieces together, we find that  must satisfy  where

Applying one step of Gaussian Elimination brings
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and back substitution delivers

The second of these is remarkable in that it contains no components of . Instead, it provides a condition on . In mechanical terms,
it states that there can be no equilibrium unless the horizontal forces on the two masses are equal and opposite. Of course one could
have observed this directly from the layout of the truss. In modern, three--dimensional structures with thousands of members meant
to shelter or convey humans one should not however be satisfied with the `visual' integrity of the structure. In particular, one
desires a detailed description of all loads that can, and, especially, all loads that can not, be equilibrated by the proposed truss. In
algebraic terms, given a matrix , one desires a characterization of

1. all those  for which  possesses a solution
2. all those  for which  does not possess a solution

We will eventually provide such a characterization in our later discussion of the column space of a matrix.

Supposing now that  we note that although the system above is consistent it still fails to uniquely determine the four
components of . In particular, it specifies only the difference between  and  As a result both

satisfy 

and still have a solution of . Searching for the source of this lack of uniqueness we observe some redundancies in the
columns of S. In particular, the third is simply the opposite of the first. As S is simply , where again, the first and third
columns are opposites. These redundancies are encoded in  in the sense that

Interpreting this in mechanical terms, we view  as a displacement and  as the resulting elongation. In

we see a nonzero displacement producing zero elongation. One says in this case that the truss deforms without doing any work and
speaks of  as an unstable mode. Again, this mode could have been observed by a simple glance at Figure. Such is not the case for
more complex structures and so the engineer seeks a systematic means by which all unstable modes may be identified. We shall see
later that all these modes are captured by the null space of .
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From

one easily deduces that  is singular. More precisely, if  were to exist then  would equal  i.e. , contrary to
Equation. As a result, Matlab will fail to solve  even when  is a force that the truss can equilibrate. One way out is to use
the pseudo-inverse, as we shall see in the General Planal Truss module.

This page titled 2.2: A Small Planar Truss is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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2.3: The General Planar Truss
Let us now consider something that resembles the mechanical prospection problem introduced in the introduction to matrix
methods to matrix methods for mechanical systems. In the figure below we offer a crude mechanical model of a planar tissue, say,
e.g., an excised sample of the wall of a vein.

Figure 1.

Elastic fibers, numbered 1 through 20, meet at nodes, numbered 1 through 9. We limit our observation to the motion of the nodes
by denoting the horizontal and vertical displacements of node j by  (horizontal) and  (vertical), respectively. Retaining the
convention that down and right are positive we note that the elongation of fiber 1 is

while that of fiber 3 is

.

As fibers 2 and 4 are neither vertical nor horizontal their elongations, in terms of nodal displacements, are not so easy to read off.
This is more a nuisance than an obstacle however, for noting our discussion of elongation in the small planar truss module, the
elongation is approximately just the stretch along its undeformed axis. With respect to fiber 2, as it makes the angle  with
respect to the positive horizontal axis, we find

Similarly, as fiber 4 makes the angle  with respect to the positive horizontal axis, its elongation is

These are both direct applications of the general formula

for fiber j Figure below, connecting node mm to node nn and making the angle  with the positive horizontal axis when node  is
assumed to lie at the point . The reader should check that our expressions for  and  indeed conform to this general
formula and that  and  agree with ones intuition. For example, visual inspection of the specimen suggests that fiber 2 can not
be supposed to stretch (i.e., have positive ) unless  and/or . Does this jive with Equation?
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Figure 2. Elongation of a generic bar, see Equation.

Applying Equation to each of the remaining fibers we arrive at  where  is 20-by-18, one row for each fiber, and one
column for each degree of freedom. For systems of such size with such a well defined structure one naturally hopes to automate the
construction. We have done just that in the accompanying M-file and diary. The M-file begins with a matrix of raw data that
anyone with a protractor could have keyed in directly from Figure 1.:

This data is precisely what Euqation requires in order to know which columns of  receive the proper  or . The final 
matrix is displayed in the diary.

The next two steps are now familiar. If  denotes the diagonal matrix of fiber stiffnesses and  denotes the vector of nodal forces
then

and so one must solve  where . In this case there is an entire three--dimensional class of  for which 
and therefore  e.g., two translations and a rotation. As a result  is singular and x = S\f  in MATLAB will get us
nowhere. The way out is to recognize that  has  stable modes and that if we restrict  to 'act' only in these directions
then it 'should' be invertible. We will begin to make these notions precise in discussions on the Fundamental Theorem of Linear
Algebra. For now let us note that every matrix possesses such a pseudo-inverse and that it may be computed in MATLAB via the 
pinv  command. Supposing the fiber stiffnesses to each be one and the edge traction to be of the form

,

we arrive at  via x=pinv(S)*f  and offer below its graphical representation.
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Before-After Plot
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2.4: Chapter 2 Exercises

With regard to the unixial truss figure,

i. Derive the  and  matrices resulting from the removal of the fourth spring,
ii. Compute the inverse, by hand via Gauss-Jordan, of the resulting  with 

iii. Use the result of (ii) to find the displacement corresponding to the load 

Generalize example 3, the general planar truss, to the case of 16 nodes connected by 42 fibers. Introduce one stiff (say 
) fiber and show how to detect it by 'properly' choosing  the before-after plot in the general planar module, from

which you conclude the presence of a stiff fiber.

Figure 1. A copy of the before-after figure from the general planar module.

This page titled 2.4: Chapter 2 Exercises is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.1: Column Space
We begin with the simple geometric interpretation of matrix-vector multiplication. Namely, the multiplication of the n-by-1 vector 

 by the m-by-n matrix  produces a linear combination of the columns of A. More precisely, if  denotes the jth column of A
then

The picture that I wish to place in your mind's eye is that AxA x lies in the subspace spanned by the columns of . This subspace
occurs so frequently that we find it useful to distinguish it with a definition.

Column Space

The column space of the m-by-n matrix  is simply the span of the its columns, i.e.  subspace of 
stands for range in this context.The notation  stands for range in this context.

Example
Let us examine the matrix:

The column space of this matrix is:

As the third column is simply a multiple of the first, we may write:

As the three remaining columns are linearly independent we may go no further. In this case,  comprises all of 

Method for Finding a Basis

To determine the basis for  (where  is an arbitrary matrix) we must find a way to discard its dependent columns. In the
example above, it was easy to see that columns 1 and 3 were colinear. We seek, of course, a more systematic means of uncovering
these, and perhaps other less obvious, dependencies. Such dependencies are more easily discerned from the row reduced form. In
the reduction of the above problem, we come very easily to the matrix

Once we have done this, we can recognize that the pivot column are the linearly independent columns of . One now asks how
this might help us distinguish the independent columns of A. For, although the rows of  are linear combinations of the rows of 

 pay attention to the indices of the pivot columns. In our example, columns  are the pivot columns of  and hence
the first, second, and fourth columns of  i.e.,
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comprise a basis for :

Suppose  is m-by-n. If columns  are the pivot columns of  then columns  of 
constitute a basis for 

This page titled 3.1: Column Space is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.2: Null Space

The null space of an -by-  matrix  is the collection of those vectors in  that  maps to the zero vector in . More
precisely,

Null Space Example
As an example, we examine the matrix 

It is fairly easy to see that the null space of this matrix is:

This is a line in 

The null space answers the question of uniqueness of solutions to . For, if  and  then 
 and so . Hence, a solution to  will be unique if, and only if, 

Method for Finding the Basis
Let us now exhibit a basis for the null space of an arbitrary matrix A. We note that to solve  is to solve . With
respect to the latter, we suppose that

are the indices of the pivot columns and that

are the indices of the nonpivot columns. We accordingly define the r pivot variables

and the  free variables

One solves  by expressing each of the pivot variables in terms of the nonpivot, or free, variables. In the example above, 
, and  are pivot while  is free. Solving for the pivot in terms of the free, we find , or, written as

a vector,

where  is free. As  ranges over all real numbers the x above traces out a line in . This line is precisely the null space of .
Abstracting these calculations we arrive at:
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Suppose that  is m-by-n with pivot indices  and free indices . A basis for 
may be constructed  vectors  where , and only  possesses a nonzero in its  component.

A MATLAB Observation
As usual, MATLAB has a way to make our lives simpler. If you have defined a matrix A and want to find a basis for its null space,
simply call the function null(A) . One small note about this function: if one adds an extra flag, 'r' , as in 
null(A, 'r') , then the basis is displayed "rationally" as opposed to purely mathematically. The MATLAB help pages define

the difference between the two modes as the rational mode being useful pedagogically and the mathematical mode of more value
(gasp!) mathematically.

Final thoughts on null spaces

There is a great deal more to finding null spaces; enough, in fact, to warrant another module. One important aspect and use of null
spaces is their ability to inform us about the uniqueness of solutions. If we use the column space to determine the existence of a
solution  to the equation . Once we know that a solution exists it is a perfectly reasonable question to want to know
whether or not this solution is the only solution to this problem. The hard and fast rule is that a solution  is unique if and only if
the null space of  is empty. One way to think about this is to consider that if  does not have a unique solution then, by
linearity, neither does . Conversely, if  then  as well.

This page titled 3.2: Null Space is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source content
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3.3: The Null and Column Spaces- An Example

Preliminary Information

Let us compute bases for the null and column spaces of the adjacency matrix associated with the ladder below.

Figure 1.

The ladder has 8 bars and 4 nodes, so 8 degrees of freedom. Denoting the horizontal and vertical displacements of node j by 
and  respectively, we arrive at the A matrix

Finding a Basis for the Column Space
To determine a basis for  we must find a way to discard its dependent columns. A moment's reflection reveals that columns 2
and 6 are colinear, as are columns 4 and 8. We seek, of course, a more systematic means of uncovering these and perhaps other less
obvious dependencies. Such dependencies are more easily discerned from the row reduced form

Recall that rref  performs the elementary row operations necessary to eliminate all nonzeros below the diagonal. For those who
can't stand to miss any of the action I recommend rrefmovie .

NOT_CONVERTED_YET: para

Each nonzero row of

 is called a pivot row. The first nonzero in each row of  is called a pivot. Each column that contains a pivot is called a
pivot column. On account of the staircase nature of  we find that there are as many pivot columns as there are pivot rows. In
our example there are six of each and, again on account of the staircase nature, the pivot columns are the linearly independent
columns of  One now asks how this might help us distinguish the independent columns of A. For although the rows of 
are linear combinations of the rows of A, no such thing is true with respect to the columns. In our example, columns 

 are the pivot columns. In general:
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Suppose A is m-by-n. If columns  are the pivot columns of  then columns  of A
constitute a basis for .

Note that the pivot columns of AredAred are, by construction, linearly independent. Suppose, however, that columns 
 of A are linearly dependent. In this case there exists a nonzero  for which  and

Now  necessarily implies that  contrary to the fact that columns  are the pivot columns of 

We now show that the span of columns  of A indeed coincides with  This is obvious if  i.e., if all of
the columns are linearly independent. If  there exists a  Looking back at  we note that its qth
column is a linear combination of the pivot columns with indices not exceeding q. Hence, there exists an x satisfying Equation and 

 and  This x then necessarily satisfies . This states that the qth column of A is a linear combination of
columns  of A

Finding a Basis for the Null Space

Let us now exhibit a basis for  We exploit the already mentioned fact that . Regarding the latter, we
partition the elements of  into so called pivot variables,

and free variables

There are evidently  free variables. For convenience, let us denote these in the future by

One solves  by expressing each of the pivot variables in terms of the nonpivot, or free, variables. In the example above, 
 and  are pivot while  and  are free. Solving for the pivot in terms of the free we find

or, written as a vector,

where  and  are free. As  and  range over all real numbers, the  above traces out a plane in  This plane is precisely the
null space of A and Equation describes a generic element as the linear combination of two basis vectors. Compare this to what

 Proposition

{ |j= 1, ⋯ , r}cj Ared { |j= 1, ⋯ , r}cj
R(A)

{ |j= 1, ⋯ , r}cj x ∈ R
n Ax = 0

∀k, k ∉ { |j= 1, ⋯ , r} : ( = 0)cj xk

Ax = 0 x = 0Ared { |j= 1, ⋯ , r}cj
Ared

{ |j= 1, ⋯ , r}cj R(A) r = n

r < n q ∉ { |j= 1, ⋯ , r}cj Ared

x = 0Ared = 1xq Ax = 0

{ |j= 1, ⋯ , r}cj

N (A) N (A) =N ( )Ared

x

{ |j= 1, ⋯ , r}xcj

{ |k ∉ { |j= 1, ⋯ , r}}xk xj

n−r

{ |j= r+1, ⋯ ,n}xcj

x = 0Ared

, , , ,x1 x2 x3 x4 x5 x7 x6 x8

= 0x7 (3.3.1)

= 0x5 (3.3.2)

=x4 x8 (3.3.3)

= 0x3 (3.3.4)

=x2 x6 (3.3.5)

= 0x1 (3.3.6)

x = +x6

⎛

⎝

⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜

0

1

0

0

0

1

0

0

⎞

⎠

⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟

x8

⎛

⎝

⎜
⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜

0

0

0

1

0

0

0

1

⎞

⎠

⎟
⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟

x6 x8 x6 x8 x R
8

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/21814?pdf


3.3.3 https://math.libretexts.org/@go/page/21814

MATLAB returns when faced with null(A,'r') . Abstracting these calculations we arrive at

Suppose that A is m-by-n with pivot indices  and free indices  A basis for  may
be constructed of  vectors  where  and only  possesses a nonzero in its  component.

The Physical Meaning of Our Calculations

Let us not end on an abstract note however. We ask what  and  tell us about the ladder. Regarding  the answer
will come in the next chapter. The null space calculation however has revealed two independent motions against which the ladder
does no work! Do you see that the two vectors in Equation encode rigid vertical motions of bars 4 and 5 respectively? As each of
these lies in the null space of A Figure? I hope not, for vertical motion of bar 4 must 'stretch' bars 1, 2, 6, and 7. How does one
resolve this (apparent) contradiction?

This page titled 3.3: The Null and Column Spaces- An Example is shared under a CC BY 1.0 license and was authored, remixed, and/or curated
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3.4: Left Null Space
If one understands the concept of a null space, the left null space is extremely easy to understand.

The Left Null Space of a matrix is the null space of its transpose, i.e.,

The word "left" in this context stems from the fact that  is equivalent to  where  "acts" on A from the left.

Example
As  was the key to identifying the null space of A, we shall see that  is the key to the null space of . If

then

and so

We solve  by recognizing that  and  are pivot variables while  is free. Solving  for the pivot in terms of
the free we find  and  hence

Finding a Basis for the Left Null Space

The procedure is no different than that used to compute the null space of A itself. In fact

Suppose that  is n-by-m with pivot indices  and free indices . A basis for 
 may be constructed of  vectors  where  and only , possesses a nonzero in its 

component.
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 Definition: Left Null Space
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 Definition: A Basis for the Left Null Space
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3.5: Row Space

The Row Space

As the columns of  are simply the rows of  we call  the row space of . More precisely

The row space of the m-by-n matrix A is simply the span of its rows, i.e.,

This is a subspace of 

Let us examine the matrix:

The row space of this matrix is:

As these three rows are linearly independent we may go no further. We "recognize" then  as a three dimensional subspace
of 

Method for Finding the Basis of the Row Space

Regarding a basis for  we recall that the rows of , the row reduced form of the matrix , are merely linear 
combinations of the rows of  and hence

This leads immediately to:

Suppose  is m-by-n. The pivot rows of  constitute a basis for .

With respect to our example,

comprises a basis for .
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 Definition: A Basis for the Row Space
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3.6: Exercises- Columns and Null Spaces

I encourage you to use rref  and null  for the following.

i. Add a diagonal crossbar between nodes 3 and 2 in the unstable ladder figure and compute bases for the column and null
spaces of the new adjacency matrix. As this crossbar fails to stabilize the ladder, we shall add one more bar.

ii. To the 9 bar ladder of (i) add a diagonal cross bar between nodes 1 and the left end of bar 6. Compute bases for the column
and null spaces of the new adjacency matrix.

We wish to show that  regardless of .

i. We first take a concrete example. Report the findings of null  when applied to  and  for the  matrix associated
with the unstable ladder figure.

ii. Show that  i.e. that if  then .
iii. Show that  i.e., that if  then  (Hint: if  then 

Suppose that  is m-by-n and that . Argue that  must be the zero matrix.
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3.7: Supplements - Vector Space

Introduction

You have long taken for granted the fact that the set of real numbers, , is closed under addition and multiplication, that each
number has a unique additive inverse, and that the commutative, associative, and distributive laws were right as rain. The set , of
complex numbers also enjoys each of these properties, as do the sets  and  of columns of n real and complex numbers,
respectively.

To be more precise, we write  and  in  as

and define their vector sum as the elementwise sum

and similarly, the product of a complex scalar,  with  as:

Vector Space
These notions lead naturally to the concept of vector space. A set  is said to be a vector space if

1.  for each  and  in .
2.  for each ,  and  in .
3. There is a unique "zero vector" such that  for each  in .
4. For each  in  there is a unique vector  such that .
5. .
6.  for each  in  and  and  in .
7.  for each  and  in  and c in .
8.  for each  in  and  and  in .
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3.8: Supplements - Subspaces

Subspace

A subspace is a subset of a vector space that is itself a vector space. The simplest example is a line through the origin in the plane.
For the line is definitely a subset and if we add any two vectors on the line we remain on the line and if we multiply any vector on
the line by a scalar we remain on the line. The same could be said for a line or plane through the origin in 3 space. As we shall be
travelling in spaces with many many dimensions it pays to have a general definition.

A subset  of a vector space  is a subspace of  when

if  and  belong to  then so does 
if  belongs to  and  is real then  belong to 

As these are oftentimes unwieldy objects it pays to look for a handful of vectors from which the entire subset may be generated.
For example, the set of  for which  constitutes a subspace of . Can you 'see' this set? Do you 'see' that

and

and

not only belong to a set but in fact generate all possible elements? More precisely, we say that these vectors span the subspace of
all possible solutions.

A finite collection  of vectors in the subspace  is said to span  if each element of  can be written as a
linear combination of these vectors. That is, if for each  there exist nn reals  such that 

.

When attempting to generate a subspace as the span of a handful of vectors it is natural to ask what is the fewest number possible.
The notion of linear independence helps us clarify this issue.

A finite collection  of vectors is said to be linearly independent when the only reals,  for
which  are  In other words, when the null space of the matrix whose
columns are  contains only the zero vector.

Combining these definitions, we arrive at the precise notion of a 'generating set.'

 Definition: Subspace
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Any linearly independent spanning set of a subspace  is called a basis of 

Though a subspace may have many bases they all have one thing in common:

The dimension of a subspace is the number of elements in its basis.

This page titled 3.8: Supplements - Subspaces is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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3.9: Supplements - Row Reduced Form

Row Reduction

A central goal of science and engineering is to reduce the complexity of a model without sacrificing its integrity. Applied to
matrices, this goal suggests that we attempt to eliminate nonzero elements and so 'uncouple' the rows. In order to retain its integrity
the elimination must obey two simple rules.

You may swap any two rows.
You may add to a row a constant multiple of another row.

With these two elementary operations one can systematically eliminate all nonzeros below the diagonal. For example, given

it seems wise to swap the first and fourth rows and so arrive at

adding the first row to the third now produces

subtracting twice the second row from the third yields

a matrix with zeros below its diagonal. This procedure is not restricted to square matrices. For example, given

we start at the bottom left then move up and right. Namely, we subtract 3 times the first row from the third and arrive at

and then subtract twice the first row from the second,
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and finally subtract the second row from the third,

It helps to label the before and after matrices.

Given the matrix  we apply elementary row operations until each nonzero below the diagonal is eliminated. We refer to the
resulting matrix as .

Uniqueness and Pivots
As there is a certain amount of flexibility in how one carries out the reduction it must be admitted that the reduced form is not
unique. That is, two people may begin with the same matrix yet arrive at different reduced forms. The differences however are
minor, for both will have the same number of nonzero rows and the nonzeros along the diagonal will follow the same pattern. We
capture this pattern with the following suite of definitions,

Each nonzero row of  is called a pivot row.

The first nonzero term in each row of  is called a pivot.

Each column of  that contains a pivot is called a pivot column.

The number of pivots in a matrix is called the rank of that matrix.

Regarding our example matrices, the first has rank 4 and the second has rank 2.

Row Reduction in MATLAB
MATLAB's rref  command goes full-tilt and attempts to eliminate ALL off diagonal terms and to leave nothing but ones on the
diagonal. I recommend you try it on our two examples. You can watch its individual decisions by using rrefmovie  instead.

This page titled 3.9: Supplements - Row Reduced Form is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve
Cox via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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CHAPTER OVERVIEW

4: Least Squares
4.1: Least Squares
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4.1: Least Squares

Introduction

We learned in the previous chapter that  need not possess a solution when the number of rows of  exceeds its rank, i.e., 
. As this situation arises quite often in practice, typically in the guise of 'more equations than unknowns,' we establish a

rationale for the absurdity .

The Normal Equations
The goal is to choose  such that  is as close as possible to . Measuring closeness in terms of the sum of the squares of the
components we arrive at the 'least squares' problem of minimizing

res

over all . The path to the solution is illuminated by the Fundamental Theorem. More precisely, we write

. On noting that (i)  and (ii) 
 we arrive at the Pythagorean Theorem.

It is now clear from the Pythagorean Theorem that the best  is the one that satisfies

As  this equation indeed possesses a solution. We have yet however to specify how one computes  given . Although
an explicit expression for  orthogonal projection of  onto , in terms of  and  is within our grasp we shall, strictly
speaking, not require it. To see this, let us note that if  satisfies the above equation then orthogonal projection of  onto , in
terms of  and  is within our grasp we shall, strictly speaking, not require it. To see this, let us note that if  satisfies the above
equation then

As  is no more easily computed than  you may claim that we are just going in circles. The 'practical' information in the above
equation however is that , i.e., , i.e.,

As  regardless of  this system, often referred to as the normal equations, indeed has a solution. This solution is
unique so long as the columns of  are linearly independent, i.e., so long as . Recalling Chapter 2, Exercise 2, we
note that this is equivalent to 

The set of  for which the misfit  is smallest is composed of those  for which  There is always
at least one such . There is exactly one such  if .

As a concrete example, suppose with reference to Figure 1 that  and 
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 Definition: Pythagoream Theorem
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Figure : The decomposition of 

As  there is no  such that . Indeed, , with the minimum

uniquely attained at , in agreement with the unique solution of the above equation, for  and 

. We now recognize, a posteriori, that  is the orthogonal projection of b onto the column space of 

.

Applying Least Squares to the Biaxial Test Problem

We shall formulate the identification of the 20 fiber stiffnesses in this previous figure, as a least squares problem. We envision
loading, the 9 nodes and measuring the associated 18 displacements, . From knowledge of  and  we wish to infer the
components of  where  is the vector of unknown fiber stiffnesses. The first step is to recognize that

may be written as

Though conceptually simple this is not of great use in practice, for  is 18-by-20 and hence the above equation possesses many
solutions. The way out is to compute  as the result of more than one experiment. We shall see that, for our small sample, 2
experiments will suffice. To be precise, we suppose that  is the displacement produced by loading  while  is the
displacement produced by loading . We then piggyback the associated pieces in

and

This  is 36-by-20 and so the system  is overdetermined and hence ripe for least squares.

We proceed then to assemble  and . We suppose  and  to correspond to horizontal and vertical stretching

4.1.1 b

b ≠R(A) x Ax = b (||Ax−b|| = ( + +−1 +( −1 +1 ≥ 1)2 x1 x2 )2 x2 )2
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1
A =( )AT 1
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b =( )AT 1

2
= Ax =bR

⎛

⎝
⎜

1

1
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⎞
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⎟

A

x x f

K = diag(k) k

KAx = fAT

∀B,B = diag(Ax) : (Bk = f)AT

B

k

x1 f 1 x2

f 2

B =( )
diag(A )AT x1

diag(A )AT x2
(4.1.1)

f =( ) .
f 1

f 2
(4.1.2)

B Bk = f

B f f 1 f 2

=f 1 ( )−1 0 0 0 1 0 −1 0 0 0 1 0 −1 0 0 0 1 0
T

=f 2 ( )0 1 0 1 0 1 0 1 0 1 0 1 0 −1 0 −1 0 −1
T
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respectively. For the purpose of our example we suppose that each  except . We assemble  as in Chapter 2 and
solve

with the help of the pseudoinverse. In order to impart some `reality' to this problem we taint each  with 10 percent noise prior to
constructing 

we note that Matlab solves this system when presented with k=B\f  when BB is rectangular. We have plotted the results of this
procedure in the link. The stiff fiber is readily identified.

Figure : Results of a successful biaxial test.

Projections

From an algebraic point of view Equation is an elegant reformulation of the least squares problem. Though easy to remember it
unfortunately obscures the geometric content, suggested by the word 'projection,' of Equation. As projections arise frequently in
many applications we pause here to develop them more carefully. With respect to the normal equations we note that if 
then

and so the orthogonal projection of bb onto  is:

Defining

takes the form . Commensurate with our notion of what a 'projection' should be we expect that  map vectors not in 
 onto  while leaving vectors already in  unscathed. More succinctly, we expect that  i.e., .

As the latter should hold for all  we expect that

We find that indeed

= 1kj = 5k8 KAAT

KA =AT xj f j

xj

B

Bk = fBT BT

4.1.1
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x = ( A bAT )−1AT
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= AxbR

= A( A bAT )−1AT

P = A( AAT )−1AT

= PbbR P
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We also note that the  is symmetric. We dignify these properties through

A matrix  that satisfies  is called a projection. A symmetric projection is called an orthogonal projection.

We have taken some pains to motivate the use of the word 'projection.' You may be wondering however what symmetry has to do
with orthogonality. We explain this in terms of the tautology

Now, if  is a projection then so too is . Moreover, if  is symmetric then the dot product of .

\[

i.e.,  is orthogonal to . As examples of a nonorthogonal projections we offer

and . Finally, let us note that the central formula , is even a bit more general than advertised. It has been
billed as the orthogonal projection onto the column space of . The need often arises however for the orthogonal projection onto
some arbitrary subspace M. The key to using the old PP is simply to realize that every subspace is the column space of some
matrix. More precisely, if

is a basis for MM then clearly if these  are placed into the columns of a matrix called  then . For example, if  is
the line through  then

is orthogonal projection onto .

Exercises

Gilbert Strang was stretched on a rack to lengths  feet under applied forces of  tons. Assuming Hooke's
law , find his compliance, , and original height, , by least squares.

With regard to the example of § 3 note that, due to the the random generation of the noise that taints the displacements, one
gets a different 'answer' every time the code is invoked.
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1. Write a loop that invokes the code a statistically significant number of times and submit bar plots of the average fiber
stiffness and its standard deviation for each fiber, along with the associated M--file.

2. Experiment with various noise levels with the goal of determining the level above which it becomes difficult to discern the
stiff fiber. Carefully explain your findings.

Find the matrix that projects  onto the line spanned by .

Find the matrix that projects  onto the line spanned by  and .

If  is the projection of  onto a k--dimensional subspace , what is the rank of  and what is ?

This page titled 4.1: Least Squares is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.1: Nerve Fibers and the Dynamic Strang Quartet

Introduction

Up to this point we have largely been concerned with

1. Deriving linear systems of algebraic equations (from considerations of static equilibrium) and
2. The solution of such systems via Gaussian elimination.

In this module we hope to begin to persuade the reader that our tools extend in a natural fashion to the class of dynamic processes.
More precisely, we shall argue that

1. Matrix Algebra plays a central role in the derivation of mathematical models of dynamical systems and that,
2. With the aid of the Laplace transform in an analytical setting or the Backward Euler method in the numerical setting, Gaussian

elimination indeed produces the solution.

Nerve Fibers and the Dynamic Strang Quartet

Gathering Information

A nerve fiber's natural electrical stimulus is not direct current but rather a short burst of current, the so-called nervous impulse. In
such a dynamic environment the cell's membrane behaves not only like a leaky conductor but also like a charge separator, or
capacitor.

Figure 1.

The typical value of a cell's membrane capacitance is

where  denotes micro-Farad. Recalling our variable conventions, the capacitance of a single compartment is

and runs parallel to each , see Figure 1. This figure also differs from the simpler circuit from the introductory electrical
modeling module in that it possesses two edges to the left of the stimuli. These edges serve to mimic that portion of the stimulus
current that is shunted by the cell body. If  denotes the surface area of the cell body, then it has

c = 1
μF

cm2

μF

= 2πa cCm

l

N

Rm

Acb

 Definition: Capacitance of Cell Body

= cCcb Acb
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Updating the Strang Quartet

We ask now how the static Strang Quartet of the introductory electrical module should be augmented.

Updating (S1')

Regarding (S1') we proceed as before. The voltage drops are

and so

Updating (S2)

To update (S2) we must now augment Ohm's law with

The current through a capacitor is proportional to the time rate of change of the potential across it.

This yields, (denoting derivative by '),

 Definition: Resistance of Cell Body

=Rcb Acbρm
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or, in matrix terms,

where

and

are the conductance and capacitance matrices.

Updating (S3)

As Kirchhoff's Current law is insensitive to the type of device occupying an edge, step (S3) proceeds exactly as before.

or, in matrix terms,

Step (S4): Assembling

Step (S4) remains one of assembling,

becomes

This is the general form of the potential equations for an RC circuit. It presumes of the user knowledge of the initial value of each
of the potentials,
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Regarding the circuit of Figure 1, and letting , we find

and an initial (rest) potential of

Modes of Attack

We shall now outline two modes of attack on such problems. The Laplace Transform is an analytical tool that produces exact,
closed-form solutions for small tractable systems and therefore offers insight into how larger systems 'should' behave. The
Backward-Euler method is a technique for solving a discretized (and therefore approximate) version of Equation. It is highly
flexible, easy to code, and works on problems of great size. Both the Backward-Euler and Laplace Transform methods require, at
their core, the algebraic solution of a linear system of equations. In deriving these methods we shall find it more convenient to
proceed from the generic system

With respect to our fiber problem

and
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5.2: The Laplace Transform
The Laplace Transform is typically credited with taking dynamical problems into static problems. Recall that the Laplace
Transform of the function  is

MATLAB is very adept at such things. For example:

The Laplace Transform in MATLAB

 >> syms t 

 

 >> laplace(exp(t)) 

 

 ans = 1/(s-1) 

 

 >> laplace(t*(exp(-t)) 

 

 ans = 1/(s+1)^2 

      

The Laplace Transform of a matrix of functions is simply the matrix of Laplace transforms of the individual elements.

Now, in preparing to apply the Laplace transform to our equation from the dynamic strang quartet module:

we write it as

and so must determine how  acts on derivatives and sums. With respect to the latter it follows directly from the definition that

Regarding its effect on the derivative we find, on integrating by parts, that

Supposing that  and  are such that  as  we arrive at

Now, upon substituting Equation 2 and Equation 3 into Equation 1 we find

h

L (h(s)) ≡ h(t)dt∫
∞

0

e
−(st)

 Definition: Laplace Transform of a matrix of fucntions

L (( )) =
e
t

te
−t

⎛

⎝

1
s−1

1

(s+1)2

⎞

⎠

= Bx +gx
′ (5.2.1)

L ( ) =L (Bx +g)
dx

dt
(5.2.2)

L

L (Bx +g) =L (Bx) +L (g)

= BL (x) +L (g)

L ( )
dx

dt
= dt∫

∞

0

e
−(st)

dx(t)

dt

= x(t) +s x(t)dte
−(st) ∣∣

∞

0
∫

∞

0

e
−(st)

(5.2.3)

(5.2.4)

x s x(t) → 0e
−(st)

t → ∞

L ( ) = sL (x) −x(0)
dx

dt
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which is easily recognized to be a linear system for 

The only thing that distinguishes this system from those encountered since our first brush with these systems is the presence of the
complex variable . This complicates the mechanical steps of Gaussian Elimination or the Gauss-Jordan Method but the methods
indeed apply without change. Taking up the latter method, we write

The matrix  is typically called the transfer function or resolvent, associated with , at . We turn to MATLAB for its
symbolic calculation. (for more information, see the tutorial on MATLAB's symbolic toolbox). For example,

 >> B = [2 -1; -1 2] 

 

 >> R = inv(s*eye(2)-B) 

 

 R = 

 

 [ (s-2)/(s*s-4*s+3), -1/(s*s-4*s+3)] 

 

 [ -1/(s*s-4*s+3), (s-2)/(s*s-4*s+3)] 

      

We note that  well defined except at the roots of the quadratic,  determinant of  and is often
referred to as the characteristic polynomial of . Its roots are called the eigenvalues of .

Let us take the  matrix of the dynamic Strang quartet module with the parameter choices specified in fib3.m, namely

The associated  is a bit bulky (please run fig3.m) so we display here only the denominator of each term, i.e.,

Assuming a current stimulus of the form  and  brings

and so Equation persists in

sL (x) −x(0) = BL (x) +L (g)
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Now comes the rub. A simple linear solve (or inversion) has left us with the Laplace transform of . The accursed No Free Lunch
Theorem

We shall have to do some work in order to recover  from  confronts us. We shall face it down in the Inverse Laplace
module.

This page titled 5.2: The Laplace Transform is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via
source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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5.3: The Inverse Laplace Transform

To Come

In The transfer Function we shall establish that the inverse Laplace transform of a function  is

where  and the real number  is chosen so that all of the singularities of  lie to the left of the line of integration.

Proceeding with the Inverse Laplace Transform

With the inverse Laplace transform one may express the solution of , as

As an example, let us take the first component of , namely

We define:

Also called singularities, these are the points ss at which  blows up.

These are clearly the roots of its denominator, namely

All four being negative, it suffices to take  and so the integration in Equation proceeds up the imaginary axis. We don't
suppose the reader to have already encountered integration in the complex plane but hope that this example might provide the
motivation necessary for a brief overview of such. Before that however we note that MATLAB has digested the calculus we wish to
develop. Referring again to fib3.m for details we note that the ilaplace  command produces

h

(h)(t) = h((c+yi)t)dyL
−1 1

2π
∫

∞

−∞
e

(c+yi)t
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Figure 1. The 3 potentials associated with the RC circuit model figure.

The other potentials, see the figure above, possess similar expressions. Please note that each of the poles of  appear as
exponents in  and that the coefficients of the exponentials are polynomials whose degrees is determined by the order of the
respective pole.

This page titled 5.3: The Inverse Laplace Transform is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox
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5.4: The Backward-Euler Method
Where in the Inverse Laplace Transform section we tackled the derivative in

via an integral transform we pursue in this section a much simpler strategy, namely, replace the derivative with a finite difference
quotient. That is, one chooses a small  and 'replaces' Equation with

The utility of Equation is that it gives a means of solving for  at the present time, , from the knowledge of  in the immediate
past, .

For example, as  is supposed known we write Equation as  is supposed known we write Equation as

Solving this for  we return to Equation and find

and solve for . The general step from past to present,

is repeated until some desired final time,  is reached. This equation has been implemented in fib3.m with  and  and 
as in the dynamic Strang module. The resulting  ( run fib3.m yourself!) is indistinguishable from the plot we obtained in the
Inverse Laplace module.

Comparing the two representations, we see that they both produce the solution to the general linear system of ordinary equations by
simply inverting a shifted copy of . The former representation is hard but exact while the latter is easy but approximate. Of course
we should expect the approximate solution, , to approach the exact solution, , as the time step , approaches zero. To see this let
us return to Equation and assume, for now, that . In this case, one can reverse the above steps and arrive at the representation

Now, for a fixed time  we suppose that  and ask whether

This limit, at least when  is one-by-one, yields the exponential

clearly the correct solution to the equation. A careful explication of the matrix exponential and its relationship to the transfer
function will have to wait until we have mastered the inverse laplace transform.
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5.5: Exercises- Matrix Methods for Dynamical Systems

Compute, without the aid of a machine, the Laplace transforms of  and . Show ALL of your work.

Extract from fib3.m  analytical expressions for  and 

Use eig  to compute the eigenvalues of . Use det  to compute the characteristic polynomial of  

roots  to compute the roots of this characteristic polynomial. Compare these to the results of eig . How does Matlab
compute the roots of a polynomial? (type help roots  for the answer).

Adapt the Backward Euler portion of fib3.m  so that one may specify an arbitrary number of compartments, as in 
fib1.m . Submit your well documented M-file along with a plot of  and  versus time (on the same well labeled

graph) for a nine compartment fiber of length .

Derive  from , by working backwards toward . Along the way you should
explain why

This page titled 5.5: Exercises- Matrix Methods for Dynamical Systems is shared under a CC BY 1.0 license and was authored, remixed, and/or
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5.6: Supplemental - Matrix Analysis of the Branched Dendrite Nerve Fiber

Introduction

In the prior modules on static and dynamic electrical systems, we analyzed basic, hypothetical one-branch nerve fibers using a modeling
methodology we dubbed the Strang Quartet. You may be asking yourself whether this method is stout enough to handle the real fiber of our
minds. Indeed, can we use our tools in a real-world setting (Figure )?

Figure : An Actual Nerve Fiber. A pyramidal neuron from the CA3 region of a rat's hippocampus, scanned at (FIX ME) X magnification.

To answer your question, the above is a rendering of a neuron from a rat's hippocampus. The tools we have refined will enable us to model the
electrical properties of a dendrite leaving the neuron's cell body. A three-branch model of such a dendrite, traced out with painstaking accuracy,
appears in Figure .

Figure : 3-branch Dendrite Model. Multi-compartment electrical model of a rendered dendrite fiber.

Our multi-compartment model reveals a 3 branch, 10 node, 27 edge structure to the fiber. Note that we have included the Nernst potentials, the
nervous impulse as a current source, and the additional leftmost edges depicting stimulus current shunted by the cell body.

We will continue using our previous notation, namely:  and  denoting cell body. and membrane resistances, respectively;  representing
the vector of potentials , and  denoting the vector of currents . Using the typical value for a cell's membrane

we derive (see variable conventions):

This capacitance is modeled in parallel with the cell's membrane resistance. Additionally, letting  denote the cell body's surface area, we
recall that its capacitance and resistance are

5.6.1

5.6.1

5.6.2

5.6.2

Ri Rm x

⋯x1 x10 x ⋯y1 y27

c = 1(μF/c )m2

 Definition: Capacitance of a Single Compartment

= 2πa cCm

l

N

Acb

 Definition: Capacitance of a Cell Body

= cCcb Acb
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Applying the Strang Quartet

Step (S1')--Voltage Drops

Let's begin filling out the Strang Quartet. For Step (S1'), we first observe the voltage drops in the figure. Since there are a whopping 27 of
them, we include only the first six, which are slightly more than we need to cover all variations in the set:

In matrix for, letting  denote the vector of batteries,

and

 Definition: Resistance of a Cell Body
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Although our adjacency matrix  is appreciably larger than our previous examples, we have captured the same phenomena as before.

Applying (S2): Ohm's Law Augmented with Voltage-Current Law for Capacitors

Now, recalling Ohm's Law and remembering that the current through a capacitor varies proportionately with the time rate of change of the
potential across it, we assemble our vector of currents. As before, we list only enough of the 27 currents to fully characterize the set:

In matrix terms, this compiles to

where
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and
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Step (S3): Applying Kirchoff's Law

Our next step is to write out the equations for Kirchoff's Current Law. We see:

Since the  coefficient matrix we'd form here is equal to , we can say in matrix terms:

where the vector  is composed of  and 

Step (S4): Stirring the Ingredients Together

Step (S4) directs us to assemble our previous toils together into a final equation, which we will then endeavor to solve. Using the process
derived in the dynamic Strang module, we arrive at the equation
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which is the general form for RC circuit potential equations. As we have mentioned, this equation presumes knowledge of the initial value of
each of the potentials, .

Observing our circuit, and letting , we calculate the necessary quantities to fill out Equation's pieces (for these calculations, see

dendrite.m):

and an initial (rest) potential of
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Applying the Backward-Euler Method
Since our system is so large, the Backward-Euler method is the best path to a solution. Looking at the matrix  we observe that it is
singular and therefore non-invertible. This singularity arises from the node connecting the three branches of the fiber and prevents us from
using the simple equation , we used in earlier Backward-Euler-ings. However, we will see that a modest generalization to our
previous form yields Equation:

capturing the form of our system and allowing us to solve for  Equation as follows:

where in our case

.

This method is implemented in dendrite.m with typical cell dimensions and resistivity properties, yielding the following graph of potentials.

Graph of Dendrite Potentials

CAAT

= Bx +gx′

D = Ex +gx′

x(t)

D = Ex +gx′

D = E (t) +g
(t) − (t−dt)x~ x~

dt
x~

(D−Edt) (t) = D (t−dt) +gdtx~ x~

(t) = (D−Edt ( (t−dt) +gdt)x~ )−1 x~

D = CAAT

E = −( GA)AT

g = Gb + fAT

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/21831?pdf


5.6.8 https://math.libretexts.org/@go/page/21831

Figure 3.
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6.1: Complex Numbers, Vectors and Matrices

Complex Numbers

A complex number is simply a pair of real numbers. In order to stress however that the two arithmetics differ we separate the two
real pieces by the symbol . More precisely, each complex number, , may be uniquely expressed by the combination ,
where  and  are real and  denotes . We call  the real part and  the imaginary part of z. We now summarize the main rules
of complex arithmetic.

If  and  then

Polar Representation
In addition to the Cartesian representation  one also has the polar form

where 

This form is especially convenient with regards to multiplication. More precisely,

As a result:

Complex Vectors and Matrices

A complex vector (matrix) is simply a vector (matrix) of complex numbers. Vector and matrix addition proceed, as in the real case,
from elementwise addition. The dot or inner product of two complex vectors requires, however, a little modification. This is
evident when we try to use the old notion to define the length of a complex vector. To wit, note that if:

i z x + iy

x y i −1
−−−

√ x y

= + iz1 x1 y1 = + iz2 x2 y2

 Definition: Complex Addition

+ ≡ + + i( + )z1 z2 x1 x2 y1 y2

 Definition: Complex Multiplication

+ ≡ ( + i )( + i ) = − + i( + )z1 z2 x1 y1 x2 y2 x1x2 y1y2 x1y2 x2y1

 Definition: Complex Conjugation

≡ − iz1
¯ ¯¯̄¯ x1 y1

 Definition: Complex Division

≡ =
z1

z2

z1

z2

z2
¯ ¯¯̄¯

z2
¯ ¯¯̄¯

+ + i( − )x1x2 y1y2 x2y1 x1y2

+x2
2 y2

2

 Definition: Magnitude of a Complex Number

| | ≡= =z1 z1z1
¯ ¯¯̄¯

− −−−
√ +x2

1 y2
1

− −−−−−
√

z = x + iy

z = |z|(cos(θ) + i sin(θ))

θ = arctan(yx)

z1z2 = | || |(cos( ) cos( ) −sin( ) sin( ) + i(cos( ) sin( ) +sin( ) cos( )))z1 z2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2

= | || |(cos( + ) + i sin( + ))z1 z2 θ1 θ2 θ1 θ2

= (|z| (cos(nθ) + i sin(nθ))zn )n
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then

Now length should measure the distance from a point to the origin and should only be zero for the zero vector. The fix, as you have
probably guessed, is to sum the squares of the magnitudes of the components of . This is accomplished by simply conjugating
one of the vectors. Namely, we define the length of a complex vector via:

In the example above this produces

As each real number is the conjugate of itself, this new definition subsumes its real counterpart.

The notion of magnitude also gives us a way to define limits and hence will permit us to introduce complex calculus. We say that

the sequence of complex numbers, , converges to the complex number  and write

or

when, presented with any  one can produce an integer  for which  when . As an example, we note that 
.

As an example both of a complex matrix and some of the rules of complex arithmetic, let us examine the following matrix:

Let us attempt to find . One option is simply to multiply the two matrices by brute force, but this particular matrix has
some remarkable qualities that make the job significantly easier. Specifically, we can note that every element not on the
diagonal of the resultant matrix is equal to 0. Furthermore, each element on the diagonal is 4. Hence, we quickly arrive at the
matrix

This final observation, that this matrix multiplied by its transpose yields a constant times the identity matrix, is indeed
remarkable. This particular matrix is an example of a Fourier matrix, and enjoys a number of interesting properties. The
property outlined above can be generalized for any , where  refers to a Fourier matrix with  rows and columns:

z =( )
1 + i

1 − i

z = (1 + i +(1 − i = 1 +2i −1 +1 −2i −1 = 0zT )2 )2

z

(z) = zz̄̄̄
T

−−−
√

= = 2(|1 + i| +(|1 − i|)2 )2
− −−−−−−−−−−−−−−−

√ 4
–

√

|n =
⎧

⎩
⎨
⎪

⎪
zn

⎛

⎝
⎜

1

2

⋯

⎞

⎠
⎟
⎫

⎭
⎬
⎪

⎪
z0

→zn z0

=z0 lim
n→∞

zn

ϵ > 0 N | − | < ϵzn z0 n ≥ N

( → 0i

2
)n
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6.2: Complex Functions

Complex Functions

A complex function is merely a rule for assigning certain complex numbers to other complex numbers. The simplest (nonconstant)
assignment is the identity function  Perhaps the next simplest function assigns to each number its square, i.e., .
As we decomposed the argument of , namely , value of ,  in this case, into its real and imaginary parts. In general, we write

where  and  are both real-valued functions of two real variables. In the case that  we find

and

With the tools of complex numbers, we may produce complex polynomials

We say that such an  is order . We shall often find it convenient to represent polynomials as the product of their factors, namel

Each  is a root of degree . Here  is the number of distinct roots of . We call  a simple root when  rational
functions. Suppose

in rational, that  is of order at most  while  is of order  with the simple roots . It should come as no
surprise that such  should admit a Partial Fraction Expansion

One uncovers the  by first multiplying each side by  and then letting  tend to . For example, if

then multiplying each side by  produces

Now, in order to isolate  it is clear that we should set . So doing we find that . In order to find  we multiply
Equation by  and then set . So doing we find , and so

Returning to the general case, we encode the above in the simple formula

You should be able to use this to confirm that

f(z) ≡ z f(z) ≡ z2

f z f z2

f(x+ iy) = u(x, y) + iv(x, y)

u v f(z) ≡ z2

u(x, y) = −x2 y2

v(x, y) = 2xy

f(z) = + +⋯ + z+zm cm−1z
m−1 c1 c0

f m

f(z) = (z− (z− ⋯ (z−λ1)d
1

λ2)d
2

λh)d
h

λj dj h f λj = 1dj

q(z) =
f(z)

g(z)

f m−1 g m { , ⋯ , }λ1 λm
q

q(z) =∑
j=1

m qj

z−λj

qj z−λj z λj

= +
1

+1z2

q1

z+ i

q2

z− i

z+ i

= +
1

z− i
q1

(z+ i)q2

z− i

q1 z = −i =q1
i

2
q2

z− i z = i = −q2
i

2

= +
1

+ iz2

i

2

z+ i

−i

2

z− i

= (z− )q(z)qj lim
zZ→λj

λj

= +
z

+1z2

1/2

z+ i

1/2

z− i
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Recall that the transfer function we met in The Laplace Transform module was in fact a matrix of rational functions. Now, the
partial fraction expansion of a matrix of rational functions is simply the matrix of partial fraction expansions of each of its
elements. This is easier done than said. For example, the transfer function of

is

The first line comes form either Gauss-Jordan by hand or via the symbolic toolbox in Matlab. More importantly, the second line is
simply an amalgamation of Equation and Equation. Complex matrices have finally entered the picture. We shall devote all of
Chapter 10 to uncovering the remarkable properties enjoyed by the matrices that appear in the partial fraction expansion of 

 Have you noticed that, in our example, the two matrices are each projections, and they sum to I. and that their product
is 0? Could this be an accident?

In The Laplace Transform module we were confronted with the complex exponential. By analogy to the real exponential we define

and find that

With this observation, the polar form is now simply 

One may just as easily verify that

and

These suggest the definitions, for complex 

and

As in the real case the exponential enjoys the property that

and in particular

B =( )
0

1

−1

0
(6.2.1)

(zI −B)−1 = ( )
1

+1z2

z

−1

1

z

= ( )+ ( )
1

z+ i

1
2

−i

2

i

2
1
2

1

z− i

1
2
i

2

−i

2
1
2

(zI −B)−1

≡ez ∑
n=0

∞ zn

n!

ee = 1 + iθ+ + + +⋯
(iθ)2

2

(iθ)3

3!

(iθ)4

4!

= 1 − + −⋯ + i(θ− + −⋯)
θ2

2

θ4

4

θ3

3

θ5

5

= cosθ+ i sinθ

z = |z|eiθ

cos(θ) =
+eiθ e(−i)θ

2

sin(θ) =
−eiθ e(−i)θ

2i

z

cos(z) ≡
+eiz e(−i)z

2

sin(z) ≡
−eiz e(−i)z

2i

=e +z1 z2 ez1ez2
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Finally, the inverse of the complex exponential is the complex logarithm,

for . One finds that .

This page titled 6.2: Complex Functions is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by Steve Cox via source
content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.
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6.3: Complex Differentiation
The complex  is said to be differentiable at  if

exists, by which we mean that

converges to the same value for every sequence  that converges to . In this case we naturally call the limit 

To illustrate the concept of 'for every' mentioned above, we utilize the following picture. We assume the point  is differentiable,
which means that any conceivable sequence is going to converge to . We outline three sequences in the picture: real numbers,
imaginary numbers, and a spiral pattern of both.

Sequences Approaching A Point In The Complex Plane

Figure : The green is real, the blue is imaginary, and the red is the spiral. (CC BY-NC; Ümit Kaya)

The derivative of  is .

The exponential is its own derivative.

The real part of  is not a differentiable function of .

We show that the limit depends on the angle of approach. First, when  on a line parallel to the real axis, e.g., 
, we find

f z0

lim
z→z0

f(z) −f( )z0

z−z0

f( ) −f( )zn z0

−zn z0

{ }zn z0 f( )d
dz

z0

z0

z0

6.3.1

 Example 6.3.1

z2 2z

lim z → z0

−z2 z2
0

z−z0
= lim

z→z0

(z− )(z+ )z0 z0

z−z0

= 2z0

 Example 6.3.2

lim z → z0
−ez ez0

z−z0
= ez0 lim

z→z0

−1ez−z0

z−z0

= ez0 lim
z→z0

∑
n=0

∞ (z−z0)n

(n+1)!

= ez0

 Example 6.3.3

z z

→zn z0

= + + izn x0
1
n y0
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while if  in the imaginary direction, e.g., , then

Conclusion
NOT_CONVERTED_YET: para

This last example suggests that when  is differentiable a simple relationship must bind its partial derivatives in  and .

If  is differentiable at  then 

With 

With 

Cauchy-Reimann Equations
In terms of the real and imaginary parts of  this result brings the Cauchy-Riemann equations.

and

Regarding the converse proposition we note that when  has continuous partial derivatives in region obeying the Cauchy-Reimann
equations then  is in fact differentiable in the region.

We remark that with no more energy than that expended on their real cousins one may uncover the rules for differentiating complex
sums, products, quotients, and compositions.

As one important application of the derivative let us attempt to expand in partial fractions a rational function whose denominator
has a root with degree larger than one. As a warm-up let us try to find  and  in the expression

= 1lim
n→∞

+ −x0
1
n x0

+ + i − + ix0
1
n

y0 x0 y0

→zn z0 = + i( + )zn x0 y0
1
n

= 0lim
n→∞

−x0 x0

+ i( + ) − + ix0 y0
1
n

x0 y0

f x y

 Definition: Partial Derivative Relationship

f z0 f( ) = = −(i )d

dz
z0

∂f( )z0

∂x

∂f( )z0

∂y

z = x+ iy0

f( )
d

dz
z0 = lim

z→z0

f(z) −f( )z0

z−z0

= lim
x→x0

f(x+ i ) −f( + iy0 x0 y0

x−x0

=
∂f( )z0

∂x

z = + iyx0

f( )
d

dz
z0 = lim

z→z0

f(z) −f( )z0

z−z0

= lim
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f( + iy) −f( + ix0 x0 y0

i(y− )y0

= −(i )
∂f( )z0

∂y

f

=
∂u

∂x

∂v

∂y

= −
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∂x
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Arguing as above, it seems wise to multiply through by  and so arrive at

On setting  this gives . With  computed, Equation takes the simple form  and so  as
well. Hence,

This latter step grows more cumbersome for roots of higher degrees. Let us consider

The first step is still correct: multiply through by the factor at its highest degree, here 3. This leaves us with

Setting  again produces the last coefficient, here . We are left however with one equation in two unknowns. Well,
not really one equation, for Equation is to hold for all , of Equation. This produces

and  The latter of course needs no comment. We derive  from the former by setting . This example will permit
us to derive a simple expression for the partial fraction expansion of the general proper rational function  where  has h
distinct roots  of respective degrees . We write

and note, as above, that  is the coefficient of  in the rational function

Hence,  may be computed by setting  in the ratio of the  derivative of  to 

As a second example, let us take

and compute the  matrices in the expansion

The only challenging term is the  element. We write

It follows that
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and

and

It now follows that

In closing, let us remark that the method of partial fraction expansions has been implemented in Matlab. In fact, Equations 
 all follow from the single command: [r,p,k]=residue([0 0 0 1],[1 -5 7 -3]) . The first input

argument is Matlab-speak for the polynomial  while the second argument corresponds to the denominator
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6.4: Exercises- Complex Numbers, Vectors, and Functions

Express  in terms of  and/or .

Confirm that  and 

Find the real and imaginary parts of  and 

Show that 

With  for complex  and  compute 

Verify that  and  satisfy the Cauchy-Riemann equations and use the proposition to evaluate their derivatives.

Submit a Matlab diary documenting your use of residue in the partial fraction expansion of the transfer function of

This page titled 6.4: Exercises- Complex Numbers, Vectors, and Functions is shared under a CC BY 1.0 license and was authored, remixed,
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7.1: Cauchy's Theorem

Introduction

Our main goal is a better understanding of the partial fraction expansion of a given transfer function. With respect to the example
that closed the discussion of complex differentiation, see the equation - In this equation, we found

where the  and  enjoy the amazing properties

and

and

and

In order to show that this always happens, i.e., that it is not a quirk produced by the particular , we require a few additional tools
from the theory of complex variables. In particular, we need the fact that partial fraction expansions may be carried out through
complex integration.

Integration of Complex Functions Over Complex Curves
We shall be integrating complex functions over complex curves. Such a curve is parameterized by one complex valued or,
equivalently, two real valued, function(s) of a real parameter (typically denoted by ). More precisely,

For example, if  while  and , then  is the line segment joining  to .

We now define

For example, if  as above and  then

while if  is the unit circle  then

(zI −B = + +)−1 1

z−λ1
P1

1

(z−λ1)2
D1

1

z−λ2
P2

Pj Dj

BP1 = BP1

= +λ1P1 D1

B = B =P2 P2 λ2P2

+ = IP1 P2

=P 2
1 P1

=P 2
2 P2

= 0D2
1

=P1D1 D1P1

= D1

= = 0P2D1 D1P2 (7.1.1)

B

t

C ≡ {z(t) = x(t) + iy(t)|a ≤ t ≤ b}

x(t) = y(t) = t a = 0 b = 1 C 0 + i0 1 + i

∫ f(z)dz =≡ f(z(t)) (t)dt∫
b

a

z′

C = {t+ it|0 ≤ t ≤ 1} f(z) = z

∫ zdz = (t+ it)(1 + i)dt = t− t+ i2tdt = i∫
1

0

∫
1

0

C { |0 ≤ t ≤ 2π}eit

∫ zdz = i dt = i dt = i cos(2t) + i sin(2t)dt = 0∈2π
0

eit eit ∫
2π

0

ei2t ∫
2π

0
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Remaining with the unit circle but now integrating  we find

We generalize this calculation to arbitrary (integer) powers over arbitrary circles. More precisely, for integer mm and fixed
complex  over

the circle of radius  centered at 

When integrating more general functions it is often convenient to express the integral in terms of its real and imaginary parts. More
precisely

The second line should invoke memories of:

If  is a closed curve and  and  are continuously differentiable real-valued functions on , the region enclosed by ,
then

Applying this to the situation above, we find, so long as  is closed, that

At first glance it appears that Green's Theorem only serves to muddy the waters. Recalling the Cauchy-Riemann equations however
we find that each of these double integrals is in fact identically zero! In brief, we have proven:

If  is differentiable on and in the closed curve  then .

Strictly speaking, in order to invoke Green's Theorem we require not only that ff be differentiable but that its derivative in fact be
continuous. This however is simply a limitation of our simple mode of proof; Cauchy's Theorem is true as stated.

This theorem, together with , permits us to integrate every proper rational function. More
precisely, if  where  is a polynomial of degree at most  and  is an mth degree polynomial with h distinct zeros at 

 with respective multiplicities of  we found that

f(z) = 1
z

∫ dz = i dt = 2πiz−1 ∫
2π

0

e−(it) eit

(z−a)m

C(a, r) ≡ {a+r |0 ≤ t ≤ 2π}eit

r a

∫ (z−a dz = (a+r −a ri dt)m ∫
2π

0

eit )m eit

= i dtrm+1 ∫
2π

0

ei(m+1)t

∫ (z−a dz = i cos((m+1)t) + i sin((m+1)t)dt = {)m rm+1 ∫
2π

0

2πi

0

ifm = −1

otherwise

∫ f(z)dz = ∫ u(x, y) + iv(x, y)dx+ i ∫ u(x, y) + iv(x, y)dy

= ∫ u(x, y)dx−∫ v(x, y)dy+ i ∫ v(x, y)dx+ i ∫ u(x, y)dy

= u(x(t), y(t)) (t) −v(x(t), y(t)) (t)dt+ i u(x(t), y(t)) (t) +v(x(t), y(t)) (t)dt∫
b

a

x′ y′ ∫
b
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y′ x′

 Green's Theorem

C M N Cin C
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Observe now that if we choose  so small that  is the only zero of  encircled by  then by Cauchy's Theorem

In Equation we found that each, save the first, of the integrals under the sum is in fact zero. Hence,

With  in hand, say from this equation or residue , one may view Equation as a means for computing the indicated integral.
The opposite reading, i.e., that the integral is a convenient means of expressing , will prove just as useful. With that in mind, we
note that the remaining residues may be computed as integrals of the product of q and the appropriate factor. More precisely,

One may be led to believe that the precision of this result is due to the very special choice of curve and function. We shall see ...
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7.2: Cauchy's Integral Formula

The Residue Theorem

After Cauchy's Theorem perhaps the most useful consequence of Cauchy's Theorem is the The Curve Replacement Lemma

Suppose that  is a closed curve that lies inside the region encircled by the closed curve . If  is differentiable in the annular
region outside  and inside  then

With reference to Figure 1, we introduce two vertical segments and define the closed curves  (where the  arc is
clockwise and the  arc is counterclockwise) and  (where the  arc is counter-clockwise and the  arc is
clockwise). By merely following the arrows we learn that

As Cauchy's Theorem implies that the integrals over  and  each vanish, we have our result.

Curve Replacement Figure

Figure 1. The Curve Replacement Lemma

This Lemma says that in order to integrate a function it suffices to integrate it over regions where it is singular, i.e.
nondifferentiable.

Let us apply this reasoning to the integral

where  encircles both  and  as depicted in Figure. We find that

Developing the integrand in partial fractions we find

C2 C1 f

C2 C1

∫ f(z)dz = ∫ f(z)dz

= abcdaC3 bc

da = adcbaC4 ad cb

∫ f(z)dz = ∫ f(z)dz+∫ f(z)dz+∫ f(z)dz

C3 C4

∫ dz
z

(z− )(z− )λ1 λ2

C λ1 λ2

∫ dz = ∫ dz+∫ dz
z

(z− )(z− )λ1 λ2

z

(z− )(z− )λ1 λ2

z

(z− )(z− )λ1 λ2

∫ dz
z

(z− )(z− )λ1 λ2

= ∫ ∫ dz+∫ ∫ dz
λ1

−λ1 λ2

1

(z− )λ1
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−λ2 λ1

1

(z− )λ2

=
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Similarly,

Putting things back together we find

Figure 2. Concentrating on the poles.

We may view Equation as a special instance of integrating a rational function around a curve that encircles all of the zeros of its
denominator. In particular, recalling that Cauchy's Theorem, we find

To take a slightly more complicated example let us integrate  over some closed curve  inside of which  is differentiable and 
 resides. Our Curve Replacement Lemma now permits us to claim that

It appears that one can go no further without specifying . The alert reader however recognizes that in the integral over  is
independent of rr and so proceeds to let , in which case  and . Computing the integral of  along the
way we are led to the hope that

In support of this conclusion we note that

Now the first term is  regardless of  while, as  the integrand of the second term approaches  and the region
of integration approaches the point . Regarding this second term, as the integrand remains bounded as the perimeter of 
approaches zero the value of the integral must itself be zero. This result if typically known as

If  is differentiable on and in the closed curve  then

for each a lying inside .

The consequences of such a formula run far and deep. We shall delve into only one or two. First, we note that, as a does not lie on 
, the right hand side is a perfectly smooth function of . Hence, differentiating each side, we find

for each a lying inside . Applying this reasoning nn times we arrive at a formula for the n-th derivative of  at 
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λ2

−λ2 λ1
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 Cauchy's Integral Equation

f C
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for each a lying inside . The upshot is that once  is shown to be differentiable it must in fact be infinitely differentiable. As a
simple extension let us consider

where  is still assumed differentiable on and in  and that  encircles both  and . By the curve replacement lemma this
integral is the sum

where  now lies in only . As  is well behaved in  we may use Equation to conclude that

Similarly, as  is well behaved in  we may use Equation to conclude that

These calculations can be read as a concrete instance of

If  is a polynomial with roots  of degree  and  is a closed curve encircling each of
the  and  is differentiable on and in  then

where

is called the residue of  at .

One of the most important instances of this theorem is the formula for the Inverse Laplace Transform.
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7.3: The Inverse Laplace Transform- Complex Integration

The Inverse Laplace Transform

If  is a rational function with poles  then the inverse Laplace transform of  is

where  is a curve that encloses each of the poles of 

Let us put this lovely formula to the test. We take our examples from discussion of the Laplace Transform and the inverse Laplace
Transform. Let us first compute the inverse Laplace Transform of

According to Equation it is simply the residue of  at  i.e.,

This closes the circle on the example begun in the discussion of the Laplace Transform and continued in exercise one for chapter 6.

For our next example we recall

from the Inverse Laplace Transform. Using numde , sym2poly  and residue , see fib4.m  for details, returns

and

You will be asked in the exercises to show that this indeed jibes with the

achieved in the Laplace Transform via ilaplace .
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(q)(t) ≡ ∫ q(z) dzL
−1 1
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7.4: Exercises- Complex Integration

Let us confirm the representation of this Cauchy's Theorem equation in the matrix case. More precisely, if 
is the transfer function associated with  then this Cauchy's Theorem equation states that

where

Compute the  per Equation for the  in this equation from the discussion of Complex Differentiation. Confirm that they
agree with those appearing in this equation from the Complex Differentiation discussion.

Use the inverse Laplace Transform equation to compute the inverse Laplace transform of .

Use the result of the previous exercise to solve, via the Laplace transform, the differential equation

Hint: Take the Laplace transform of each side.

Explain how one gets from  and  to .

Compute, as in fib4.m , the residues of  and  and confirm that they give rise to the  and 
you derived in the discussion of Chapter 1.1.
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8.1: Introduction to the Eigenvalue Problem

Introduction

Harking back to our previous discussion of The Laplace Transform we labeled the complex number  an eigenvalue of  if 
 was not invertible. In order to find such  one has only to find those  for which  is not defined. To take a

concrete example we note that if

then

and so  and  are the two eigenvalues of . Now, to say that  is not invertible is to say that its columns are
linearly dependent, or, equivalently, that the null space  contains more than just the zero vector. We call

 the jth eigenspace and call each of its nonzero members a jth eigenvector. The dimension of  is
referred to as the geometric multiplicity of . With respect to  above, we compute  by solving  i.e.,

Clearly,

Arguing along the same lines we also find

That  is  but possesses only 2 linearly eigenvectors leads us to speak of  as defective. The cause of its defect is most likely
the fact that  is a double pole of . In order to flesh out that remark and uncover the missing eigenvector we must take
a much closer look at the transfer function

In the mathematical literature this quantity is typically referred to as the Resolvent of .
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8.2: The Resolvent

The Transfer Function

One means by which to come to grips with  is to treat it as the matrix analog of the scalar function

This function is a scaled version of the even simpler function  This latter function satisfies the identity (just multiply across by 
 to check it)

for each positive integer n. Furthermore, if  then  as  and so Equation becomes, in the limit,

the familiar geometric series. Returning to Equation we write

and hence, so long as  we find,

This same line of reasoning may be applied in the matrix case. That is,

and hence, so long as  where  is the magnitude of the largest element of 

Although Equation is indeed a formula for the transfer function you may, regarding computation, not find it any more attractive
than the Gauss-Jordan method. We view Equation however as an analytical rather than computational tool. More precisely, it
facilitates the computation of integrals of . However,  is the circle of radius  centered at the origin and  then

This result is essential to our study of the eigenvalue problem. As are the two resolvent identities. Regarding the first we deduce
from the simple observation

that

The second identity is simply a rewriting of
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8.3: The Partial Fraction Expansion of the Resolvent

Partial Fraction Expansion of the Transfer Function

The Gauss-Jordan method informs us that  will be a matrix of rational functions with a common denominator. In keeping with the
notation of the previous chapters, we assume the denominator to have the  distinct roots,  with associated
multiplicities 

Now, assembling the partial fraction expansions of each element of  we arrive at

where, recalling the equation from Cauchy's Theorem, the matrix  equals the following:

As we look at this example in the introduction, we find

One notes immediately that these matrices enjoy some amazing properties. For example

Below we will now show that this is no accident. As a consequence of Equation and the first resolvent identity, we shall find
that these results are true in general.

 as seen above.

Recall that the  appearing in Equation is any circle about  that neither touches nor encircles any other root. Suppose that 
and  are two such circles and  encloses . Now,

and so

We used the first resolvent identity, This Transfer Function equation, in moving from the second to the third line. In moving from
the fourth to the fifth we used only
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and

The latter integrates to zero because  does not encircle ww

From the definition of orthogonal projections, which states that matrices that equal their squares are projections, we adopt the
abbreviation

With respect to the product , for , the calculation runs along the same lines. The difference comes in Equation where, as 
 lies completely outside of , both integrals are zero. Hence,

If  then 

Along the same lines we define

and prove
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and

With  we have shown  i.e., . Similarly, with  and  we find  i.e., 
. Continuing in this fashion we find , or . Finally, at  this becomes

by Cauchy's Theorem.
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along with the verification of a number of the properties laid out in Complex Integration Equations.
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8.4: The Spectral Representation
With just a little bit more work we shall arrive at a similar expansion for BB itself. We begin by applying the second resolvent
identity to . More precisely, we note that the second resolvent identity implies that

Summing this over  we find

We can go one step further, namely the evaluation of the first sum. This stems from the equation in the discussion of the transfer
function where we integrated  over a circle  where . The connection to the  is made by the residue theorem.
More precisely,

Comparing this to the equation from the discussion of the transfer function we find

and so takes the form

It is this formula that we refer to as the Spectral Representation of . To the numerous connections between the  and  we
wish to add one more. We first write as

and then raise each side to the  power. As  and  we find

For this reason we call the range of  the jth generalized eigenspace, call each of its nonzero members a jth generalized
eigenvector and refer to the dimension of  as the algebraic multiplicity of . With regard to the first example from the
discussion of the eigenvalue problem, we note that although it has only two linearly independent eigenvectors the span of the
associated generalized eigenspaces indeed fills out . One may view this as a consequence of  or, perhaps more
concretely, as appending the generalized first eigenvector  to the original two eigenvectors  and 

. In still other words, the algebraic multiplicities sum to the ambient dimension (here 3), while the sum of geometric
multiplicities falls short (here 2).
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8.5: The Eigenvalue Problem- Examples
We take a look back at our previous examples in light of the results of two previous sections The Spectral Representation and The
Partial Fraction Expansion of the Transfer Function. With respect to the rotation matrix

we recall, see Cauchy's Theorem, that

and so

From  it follows that  and  are actual (as opposed to generalized) eigenspaces. These column spaces
are easily determined. In particular,  is the span of

while  is the span of

To recapitulate, from partial fraction expansion one can read off the projections from which one can read off the eigenvectors. The
reverse direction, producing projections from eigenvectors, is equally worthwhile. We laid the groundwork for this step in the
discussion of Least Squares. In particular, this Least Squares projection equation stipulates that

As  these formulas can not possibly be correct. Returning to the Least Squares discussion we realize that it was,
perhaps implicitly, assumed that all quantities were real. At root is the notion of the length of a complex vector. It is not the square
root of the sum of squares of its components but rather the square root of the sum of squares of the magnitudes of its components.
That is, recalling that the magnitude of a complex quantity  is 

Yes, we have had this discussion before, recall complex numbers, vectors, and matrices. The upshot of all of this is that, when
dealing with complex vectors and matrices, one should conjugate before every transpose. Matlab (of course) does this
automatically, i.e., the ' symbol conjugates and transposes simultaneously. We use  to denote 'conjugate transpose', i.e.,

All this suggests that the desired projections are more likely
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8.6: The Eigenvalue Problem- Exercises

Argue as in Proposition 1 in the discussion of the partial fraction expansion of the transfer function that if  then 
.

Argue from the equation from the discussion of the Spectral Representation that .

The two previous exercises come in very handy when computing powers of matrices. For example, suppose  is 4-by-4, that 
 and . Use the spectral representation of  together with the first two exercises to arrive at simple

formulas for  and .

Compute the spectral representation of the circulant matrix

Carefully label all eigenvalues, eigenprojections and eigenvectors.
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9.1: The Spectral Representation of a Symmetric Matrix

Introduction

Our goal is to show that if  is symmetric then

each  is real,
each  is symmetric and
each  vanishes.

Let us begin with an example.

The transfer function of

is

and so indeed each of the bullets holds true. With each of the  falling by the wayside you may also expect that the respective
geometric and algebraic multiplicities coincide.

The Spectral Representation

We have amassed anecdotal evidence in support of the claim that each  in the spectral representation

is the zero matrix when  is symmetric, i.e., when , or, more generally, when  where  Matrices for
which  are called Hermitian. Of course real symmetric matrices are Hermitian.

Taking the conjugate transpose throughout we find,

That is, the  are the eigenvalues of  with corresponding projections  and nilpotents  Hence, if , we find on
equating terms that

and
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The former states that the eigenvalues of an Hermitian matrix are real. Our main concern however is with the consequences of the
latter. To wit, notice that for arbitrary 

As  for every  it follows (recall the previous exercise) that . Continuing in this fashion we find 

, and so, eventually, . If, in addition,  is real then as the eigenvalues are real and all the  vanish, the  must
also be real. We have now established

If  is real and symmetric then

where the  are real and the  are real orthogonal projections that sum to the identity and whose pairwise products vanish.

One indication that things are simpler when using the spectral representation is

As this holds for all powers it even holds for power series. As a result,

It is also extremely useful in attempting to solve

for . Replacing  by its spectral representation and  by  or, more to the point by  we find

Multiplying through by  gives  or . Multiplying through by the subsequent 's gives 

Hence,

We clearly run in to trouble when one of the eigenvalues vanishes. This, of course, is to be expected. For a zero eigenvalue
indicates a nontrivial null space which signifies dependencies in the columns of  and hence the lack of a unique solution to 

.

Another way in which may be viewed is to note that, when  is symmetric, this previous equation takes the form
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Now if 0 is not an eigenvalue we may set  in the above and arrive at

Hence, the solution to B is

We have finally reached a point where we can begin to define an inverse even for matrices with dependent columns, i.e., with a
zero eigenvalue. We simply exclude the offending term in link. Supposing that  we define the pseudo-inverse of  to be

Let us now see whether it is deserving of its name. More precisely, when  we would expect that  indeed
satisfies . Well

It remains to argue that the latter sum really is . We know that

The latter informs us that . As , we have, in fact, that . AS  is nothing but orthogonal projection
onto  it follows that  and so , that is,  is a solution to  The representation is
unarguably terse and in fact is often written out in terms of individual eigenvectors. Let us see how this is done. Note that if 

 then  and so,

i.e.,  is an eigenvector of  associated with . Similarly, every (nonzero) vector  is an eigenvector of  associated with 
.

Next let us demonstrate that each element of  is orthogonal to each element of  when . If  and 
 then

With this we note that if  constitutes a basis for  then in fact the union of such bases,

forms a linearly independent set. Notice now that this set has

elements. That these dimensions indeed sum to the ambient dimension, , follows directly from the fact that the underlying 

sum to the  identity matrix. We have just proven.
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If  is real and symmetric and , then  has a set of nn linearly independent eigenvectors.

Getting back to a more concrete version of link we now assemble matrices from the individual bases

and note, once again, that , and so,

I understand that you may feel a little overwhelmed with this formula. If we work a bit harder we can remove the presence of the
annoying inverse. What I mean is that it is possible to choose a basis for each  for which each of the corresponding 
satisfy . As this construction is fairly general let us devote a separate section to it (see Gram-Schmidt
Orthogonalization).
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9.2: Gram-Schmidt Orthogonalization
Suppose that  is an -dimensional subspace with basis

We transform this into an orthonormal basis

for  via

1. Set  and 

2.  minus the projection of  onto the line spanned by .

That is,

Set  and 

3.  minus the projection of  onto the plane spanned by  and . That is,

Set  and . Continue in this fashion through step (m)

(m)  minus its projection onto the subspace spanned by the columns of 

Set . To take a simple example, let us orthogonalize the following basis for 

1. 
2.  and so, 
3.  and so, 

We have arrived at

Once the idea is grasped the actual calculations are best left to a machine. Matlab accomplishes this via the orth command. Its
implementation is a bit more sophisticated than a blind run through our steps (1) through (m). As a result, there is no guarantee that
it will return the same basis. For example

>>X=[1 1 1;0 1 1 ;0 0 1]; 
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  0.5910   0.3280 -0.7370 

 

  0.3280   0.7370  0.5910

This ambiguity does not bother us, for one orthogonal basis is as good as another. Let us put this into practice, via (10.8).
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9.3: The Diagonalization of a Symmetric Matrix
By choosing an orthogonal basis  for each  and collecting the basis vectors in

We find that

As a result, the spectral representation takes the form

This is the spectral representation in perhaps its most detailed dress. There exists, however, still another form! It is a form that you
are likely to see in future engineering courses and is achieved by assembling the  into a single  orthonormal matrix

Having orthonormal columns it follows that .  being square, it follows in addition that . Now,

may be encoded in matrix terms via

where  is the  diagonal matrix whose first  diagonal terms are , whose next  diagonal terms are , and so on.
That is, each  is repeated according to its multiplicity. Multiplying each side of Equation, from the right, by  we arrive at

Because one may just as easily write

one says that  diagonalizes .

Let us return the our example

of the last chapter. Recall that the eigenspace associated with  had
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Normalizing the vector associated with  we arrive at

and hence

and
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10.1: Overview
The matrix exponential is a powerful means for representing the solution to nn linear, constant coefficient, differential equations.
The initial value problem for such a system may be written

where  is the n-by-n matrix of coefficients. By analogy to the 1-by-1 case we might expect

to hold. Our expectations are granted if we properly define . Do you see why simply exponentiating each element of  will no
suffice?

There are at least 4 distinct (but of course equivalent) approaches to properly defining . The first two are natural analogs of the
single variable case while the latter two make use of heavier matrix algebra machinery.

1. The Matrix Exponential as a Limit of Powers
2. The Matrix Exponential as a sum of Powers
3. The Matrix Exponential via the Laplace Transform
4. The Matrix Exponential via Eigenvalues and Eigenvectors

Please visit each of these modules to see the definition and a number of examples.

For a concrete application of these methods to a real dynamical system, please visit the Mass-Spring-Damper-module.

Regardless of the approach, the matrix exponential may be shown to obey the 3 lovely properties

1. 
2. 
3.  is nonsingular and 

Let us confirm each of these on the suite of examples used in the submodules.
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then

1.  and 

2. You will recognize this statement as a basic trig identity 

3. 

If

then

1. 

2. 

3. 
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10.2: The Matrix Exponential as a Limit of Powers
You may recall from Calculus that for any numbers aa and tt one may achieve  via

The natural matrix definition is therefore

where  is the n-by-n identity matrix.

The easiest case is the diagonal case, e.g.,

for then

and so

Note that this is NOT the exponential of each element of .

As a concrete example let us suppose

From

We discern a pattern: the diagonal elements are equal even polynomials while the off diagonal elements are equal but opposite
odd polynomials. The degree of the polynomial will grow with kk and in the limit we 'recognize'
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If

then

for each value of  and so
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10.3: The Matrix Exponential as a Sum of Powers
You may recall from Calculus that for any numbers aa and tt one may achieve eatea t via

The natural matrix definition is therefore

where  is the n-by-n identity matrix.

The easiest case is the diagonal case, e.g.,

for then

and so

Note that this is NOT the exponential of each element of .

As a second example let us suppose

We recognize that its powers cycle, i.e.,

and so
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then

and so
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10.4: The Matrix Exponential via the Laplace Transform
You may recall from the Laplace Transform module that may achieve  via

The natural matrix definition is therefore

where  is the n-by-n identity matrix.

The easiest case is the diagonal case, e.g.,

for then

and so

As a second example let us suppose

and compute, in matlab,

>> inv(s*eye(2)-A)   

 

    ans = [ s/(s^2+1),  1/(s^2+1)] 

          [-1/(s^2+1),  s/(s^2+1)] 

 

 >> ilaplace(ans) 

 

    ans = [ cos(t),  sin(t)] 

          [-sin(t),  cos(t)] 
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then

>> inv(s*eye(2)-A)   

 

    ans = [ 1/s,  1/s^2] 

          [   0,    1/s] 

 

 >> ilaplace(ans) 

 

    ans = [ 1,  t] 

          [ 0,  1]         
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10.5: The Matrix Exponential via Eigenvalues and Eigenvectors
In this module we exploit the fact that the matrix exponential of a diagonal matrix is the diagonal matrix of element exponentials.
In order to exploit it we need to recall that all matrices are almost diagonalizable. Let us begin with the clean case: if  is n-by-n
and has  distinct eigenvalues, , and therefore  linear eigenvectors, , then we note that

maybe written as

where  is the full matrix of eigenvectors and  is the diagonal matrix of
eigenvalues. One cool reason for writing  as in Equation is that

and, more generally

If we now plug this into the definition in The Matrix Exponential as a Sum of Powers, we find

where  is simply

Let us exercise this on our standard suite of examples.

If

then

and so 

As a second example let us suppose

and compute, in matlab,

>> [S, Lam] = eig(A) 

 

    S = 0.7071             0.7071 

             0 + 0.7071i        0 - 0.7071i 

 

 

    Lam = 0 + 1.0000i     0 
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          0               0 - 1.0000i 

 

 

 >> Si = inv(S) 

 

    Si = 0.7071     0 - 0.7071i 

         0.7071     0 + 0.7071i 

 

 

 >> simple(S*diag(exp(diag(Lam)*t))*Si) 

 

    ans = [ cos(t),   sin(t)] 

          [-sin(t),   cos(t)] 

 

If

then matlab delivers

>> [S, Lam] = eig(A) 

 

    S = 1.0000   -1.0000 

        0         0.0000 

 

    Lam = 0    0 

          0    0  

So zero is a double eigenvalue with but one eigenvector. Hence SS is not invertible and we can not invoke. The generalization
is often called the Jordan Canonical Form or the Spectral Representation. The latter reads

where the  are the distinct eigenvalues of  while, in terms of the resolvent 

is the associated eigen-projection and

is the associated eigen-nilpotent. In each case,  is a small circle enclosing only 

Conversely we express the resolvent
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where

with this preparation we recall Cauchy's integral formula for a smooth function f

where  is a curve enclosing the point 

where  encloses ALL of the eigenvalues of . For  we find

with regard to our example we find,  so

Let us consider a slightly bigger example, if

then

>> R = inv(s*eye(3)-A) 

 

    R = [ 1/(s-1),   1/(s-1)^2,         0] 

        [       0,     1/(s-1),         0] 

        [       0,           0,   1/(s-2)]
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10.6: The Mass-Spring-Damper System
Figure 1. Mass, spring, damper system

If one provides an initial displacement, , and velocity, , to the mass depicted in Figure then one finds that its displacement, 
 at time  satisfies

where prime denotes differentiation with respect to time. It is customary to write this single second order equation as a pair of first
order equations. More precisely, we set

and note that Equation becomes

Denoting  we write Equation as

We recall from The Matrix Exponential module that

We shall proceed to compute the matrix exponential along the lines of The matrix Exponential via Eigenvalues and Eigenvectors
module. To begin we record the resolvent

The eigenvalues are the roots of 

We naturally consider two cases, the first being

. In this case the partial fraction expansion of  yields

and so  i.e.,  it follows that

If  is real, i.e., if  then both  and  are negative real numbers and  decays to 0 without oscillation. If, on the
contrary,  is imaginary, i.e., , then
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and so  decays to 0 in an oscillatory fashion. When Equation holds the system is said to be overdamped while when Equation
governs then we speak of the system as underdamped. It remains to discuss the case of critical damping.

. In this case,  and so we need only compute  and . As there is but one  and the  are known

to sum to the identity it follows that . Similarly, this equation dictates that

On substitution of this into this equation we find

Under the assumption, as above, that , we deduce from Equation that
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CHAPTER OVERVIEW

11: Singular Value Decomposition
11.1: The Singular Value Decomposition
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11.1: The Singular Value Decomposition
,The singular value decomposition is another name for the spectral representation of a rectangular matrix. Of course if  is m-by-m
and  then it does not make sense to speak of the eigenvalues of . We may, however, rely on the previous section to give us
relevant spectral representations of the two symmetric matrices

That these two matrices together may indeed tell us 'everything' about  can be gleaned from

You have proven the first of these in a previous exercise. The proof of the second is identical. The row and column space results
follow from the first two via orthogonality.

On the spectral side, we shall now see that the eigenvalues of  and  are nonnegative and that their nonzero eigenvalues
coincide. Let us first confirm this on the adjacency matrix associated with the unstable swing

The respective products are

Analysis of the first is particularly simple. Its null space is clearly just the zero vector while  and  are its eigenvalues.
Their geometric multiplicities are  and . In  we recognize the  matrix from the exercise in another module and
recall that its eigenvalues are , , and  with multiplicities , , and . Hence, at least for this 

, the eigenvalues of  and  are nonnegative and their nonzero eigenvalues coincide. In addition, the geometric
multiplicities of the nonzero eigenvalues sum to 3, the rank of .

The eigenvalues of  and  are nonnegative. Their nonzero eigenvalues, including geometric multiplicities, coincide.
The geometric multiplicities of the nonzero eigenvalues sum to the rank of .

If  then , i.e.,  and so . A similar argument works for .

Now suppose that  and that  constitutes an orthogonal basis for the eigenspace , starting from

we find, on multiplying through (from the left) by  that

A

m ≠ n A
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i.e.,  is an eigenvalue of  with eigenvector , so long as .

It follows from the first paragraph of this proof that , which, by hypothesis, is nonzero. Hence,

is a collection of unit eigenvectors of  associated with . Let us now show that these vectors are orthonormal for fixed .

We have now demonstrated that if  is an eigenvalue of  of geometric multiplicity . Reversing the argument, i.e.,
generating eigenvectors of  from those of  we find that the geometric multiplicities must indeed coincide.

Regarding the rank statement, we discern from Equation that if  then . The union of these vectors indeed
constitutes a basis for , for anything orthogonal to each of these  necessarily lies in the eigenspace corresponding to a
zero eigenvalue, i.e., in . As  it follows that  and hence the ,
for , sum to .

Let us now gather together some of the separate pieces of the proof. For starters, we order the eigenvalues of  from high to
low,

and write

where

and  is the  diagonal matrix with  in the first  slots,  in the next  slots, etc. Similarly

where

and  is the mmmm diagonal matrix with  in the first  slots,  in the next  slots, etc. The  were defined in Equation
under the assumption that . If  let  denote an orthonormal basis for . Finally, call

and let  denote the m-by-n matrix diagonal matrix with  in the first  slots,  in the next  slots, etc. Notice that

Now recognize that Equation may be written

and that this is simply the column by column rendition of

As  we may multiply through (from the right) by  and arrive at the singular value decomposition of 

Let us confirm this on the  matrix in Equation. We have

λj AAT Axj,k A ≠ 0xj,k

||A || =xj,k λj
−−

√

∀1 ≤ k ≤ : ( ≡nj yj,k
Axj,k

λj
−−

√

AAT λj j

= A = = 0yT
j,iyj,k

1

λj

xT
j,iA

T xj,k xT
j,ixj,k

> 0λj AAT nj

AAT AAT

> 0λj ∈ R( A)xj,k AT

R( A)AT xj,k

N ( A)AT R( A) =R( )AT AT dimR( A) = r dimR A = rAT AT nj

> 0λj r

AAT

> > ⋯ >λ1 λ2 λh

A = XAT ΛnXT

∀ = { , ⋯ , } : (X = { , ⋯ , })Xj xj,1 xj,nj X1 Xh

Λn n −by −n λ1 n1 λ2 n2

A = YAT ΛmY T

∀ = { , ⋯ , } : (Y = { , ⋯ , })Yj yj,1 yj,nj Y1 Yh

Λm λ1 n1 λ2 n2 yj,k

> 0λj = 0λj Yj N (A )AT

=σj λj

−−
√

Σ σ1 n1 σ2 n2

Σ =ΣT Λn

Σ =ΣT Λm

A =xj,k σjyj,k

AX = Y Σ

X = IXT XT A

A = Y ΣXT

A

https://libretexts.org/
https://creativecommons.org/licenses/by/1.0/
https://math.libretexts.org/@go/page/21868?pdf


11.1.3 https://math.libretexts.org/@go/page/21868

Hence

and so  says that  should coincide with

This indeed agrees with . It also agrees (up to sign changes on the columns of  with what one receives upon typing
[Y, SIG, X] = scd(A)  in Matlab.

You now ask what we get for our troubles. I express the first dividend as a proposition that looks to me like a quantitative version
of the fundamental theorem of linear algebra.

If  is the singular value decomposition of  then

1. The rank of , call it , is the number of nonzero elements in 
2. The first  columns of  constitute an orthonormal basis for . The  last columns of  constitute an

orthonormal basis for 
3. The first  columns of  constitute an orthonormal basis for . The  last columns of  constitute an

orthonormal basis for 

Let us now 'solve'  with the help of the pseudo-inverse of . You know the 'right' thing to do, namely reciprocate all of the
nonzero singular values. Because  is not necessarily  we must also be careful with dimensions. To be precise, let  denote the 

 matrix whose first  diagonal elements are , whose next  diagonal elements are  and so on. In the case that 
, set the final  diagonal elements of  to zero. Now, one defines the pseudo-inverse of  to be

In the case of that  is that appearing in Equation we find
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and so

therefore

in agreement with what appears from pinv(A) . Let us now investigate the sense in which  is the inverse of . Suppose that 
 and that we wish to solve . We suspect that  should be a good candidate. Observe by Equation that

because 

because 

that is  satisfies the least-squares problem .
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